
BE 25Winter 2025
Homework #7

Due at 9 AM PST, March 4, 2025

Problem 7.1 (Stretching a single molecule, 35 pts).
This problem is based on problem 9.14 from Dill and Bromberg. In single molecule ex-
periments, researchers can grab on to the ends of single polymer molecules and pull
on them. They typically apply a constant force f on the ends of the polymer (that
is total force, not force on each end), and then measure the distance L between the
ends of the polymer. This is commonly done for biopolymers, including proteins
and DNA.

a) Write an expression dE for the total differential of the energy E(S,V,L).
b) Write down the total differential for a thermodynamic potential Φ (T, p,L).
c) Use this potential to derive a Maxwell relation involving (∂S/∂L)T,p.

d) By doing an experiment at various temperatures, we can use the Maxwell re-
lation you derived to learn about the entropic effects of the polymer. For
small displacements, we can write the force as a function of displacements
to linear order in L (like a Hookean spring); f = k(T, p)L, where the spring
constant is in general dependent on temperature and pressure. Operating at
constant pressure, an experimenter finds a linear dependence on temperature,
k = a0+a1T. With this empirically determined relation, derive an expression
for the entropy S(L) of the polymer at fixed temperature and pressure.

e) Derive an expression for the enthalpy H(L) of the polymer.

f ) Show that if a0 = 0, the resistance to stretching is entirely entropic.

Problem 7.2 (Convex Gibbs free energy, 15 pts).
Prove that the Gibbs free energy of a dilute solution is a convex function of all of the
ni’s, where ni is the number of particles of solute i in the solution. This means that
there exists a unique equilibrium concentration of solute species and thermodynamic
stability is alwaysmaintained. (This is true in for dilute solutions, but is not generally
true.)

Problem 7.3 (Turgor pressure and hypoosmotic shock, 10 pts).
When a cell is suddenly moved from an environment with a given concentration of
solute one with a lower concentration, it is said to experience hypoosmotic shock.
The osmotic pressure in the cell jumps and the cell may rupture. Cells have mecha-
nisms for dealing with such shocks, includingmechanosensitive ion channels, which
open to allow the outflow of solute to help bring the osmotic pressure down. In a
study of cellular responses to osmotic shock, Chure and coworkers (Chure, et al., J.
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Bacteriol., 200, e00460-18, 2018) used a microfluidic device to transfer cells at 37°C
from an LB solutionwith 500mMNaCl to an LB solutionwithout anyNaCl. Unper-
turbed, E. coli cells have an NaCl concentration of a few hundred mM (Szatmári, et
al., Sci. Reports, 10, 12002, 2020). What is the approximate osmotic pressure (which
is called turgor pressure in the context of bacterial cells) when the cells are suddenly
put in the salt-free solution? How does this pressure compare to the typical turgor
pressure of unperturbed cells of about 30 kPa as measured by Deng, et al., Phys. Rev.
Lett., 107, 158101, 2011? (Note that the Deng, et al. measurement is smaller than
other measurements, which put the turgor pressure around 1–3 atm.) Suggestion:
Do not use a calculator or computer for this. Estimates are much more fun without
them!

Problem 7.4 (Living actin polymerization, 40 pts).
Living polymers are polymers where each added monomer binds reversibly. Actin
is a very important living polymer in cells. The chemical reaction scheme for a living
polymer is shown below.

◦+ ◦ ⇌ ◦◦+◦ ⇌ ◦◦◦+ ◦ ⇌ ◦◦◦◦+◦ ⇌ · · · (7.1)

The dissociation constant losing a monomer from the end of a polymer of length
n > 2 is Kd. The dissociation constant for a dimer falling apart is Kd,nuc. That is, the
dissociation constant associated with starting, or nucleating a polymer, is different
than that for continuing polymer growth. Let cn be the concentration of polymer of
length n, and c1 be the concentration of monomer. We will consider the length of
polymers in solution at equilibrium.

a) Show that for n ≥ 2,

cn = Kd κ xn, (7.2)

where κ = Kd/Kd,nuc and x = c1/Kd.

b) Show that the probability that a given polymer in solution has length n for
n ≥ 2 is

Pn =
κ

1 + κ x
1−x

xn−1. (7.3)

Also show that

P1 =
1

1 + κ x
1−x

. (7.4)

Hint: Recall the result for a geometric series with 0 < x < 1,
∞∑

n=0

xn =
1

1 − x . (7.5)
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c) Compute the average polymer length ⟨n⟩ in terms of κ and x. Hint: You may
need to compute a sum that can be expressed as the derivative of a geometric
series or of a sum you already calculated in part (b).

d) Let c0
1 be the total amount of monomers (incorporated into polymers and free)

in the solution. Show that x may be found by solving the following cubic equa-
tion and choosing the real root that lies between 0 and 1.

(1 − κ )x3 − (2 + x0 − 2κ )x2 + (1 + 2x0)x − x0 = 0, (7.6)

where x0 = c0
1/Kd.

e) In typical conditions (both in the cell and in the lab) when studying actin, c0
1 ≫

Kd such that x0 ≫ 1. As rough estimates for actin in a cell, take Kd ≈ 100 nM
(Pollard, 1986) and c0

1 ≈ 200 μM (Bray, 1992), such that x0 ≈ 2000. Make
a plot of ⟨n⟩ versus κ for this value of x0. What does your plot and the fact
that for actin Kd,nuc ≈ 100 mM (Sept, 2001) tell you about the importance of
nucleation in setting polymer length?

Hint: You can find the roots of a polynomial using Numpy.

import numpy as np

# Find roots for a + bx + cx^2 + dx^3.
a, b, c, d = -6, 11, -6, 1
coef = [a, b, c, d]

roots = np.polynomial.Polynomial(coef).roots()

# roots is now array([1., 2., 3.])

For an interesting story about cubic equations, check out this little essay by
Mark Kac.
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https://www.jstor.org/stable/27852865
https://www.jstor.org/stable/27852865

