
BE 25Winter 2024
Homework #6

Due at 9 AM PST, February 22, 2024

Problem 6.1 (Connections between free energy and entropy, 25 pts).
Consider a system whose microstates are described by the Boltzmann distribution,
that is the probability of realizing microstate i is

Pi =
e−βEi

Z , (6.1)

where β = 1/kBT and

Z =
∑

i

e−βEi (6.2)

is the partition function. Given the probability mass function above, that the free
energy, often called the Helmholtz free energy, is F = −kBT ln Z, and the result we
derived in lecture, S = kB β ⟨E⟩+ kB ln Z show the following results.

a) Show that the expectation value of the energy, ⟨E⟩, is

⟨E⟩ = −∂ ln Z
∂ β =

∂ βF
∂ β . (6.3)

b) Show that F = ⟨E⟩ − TS.
c) Show that S = −∂F/∂T.

As we discussed in lecture, taken together these results show that the free energy is
a Legendre transform of the energy. Hint: It is up to you, but I found in all cases that
it is easier to start with the right hand sides of the above equations and verify that
they equal the left.

Problem 6.2 (Bounds on susceptibilities, 25 pts).

a) Prove that the isothermal compressibility κ T is positive for a thermodynami-
cally stable system with a constant number of particles.

b) We showed in lecture that thermodynamic stability requires that Cp > 0.
Show that in addition to Cp > 0 and κ T > 0, that thermodynamic stability
requires that

κ T Cp

VT − α 2 < 0, (6.4)
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for a system with a constant number of particles, where α is the thermal ex-
pansivity. This means that while α can be positive or negative (or zero), it is
nonetheless constrained in the values it may take.

As a reminder,

Cp = T
(
∂S
∂T

)
p
, (6.5)

κ T = − 1
V

(
∂V
∂p

)
T
, (6.6)

α =
1
V

(
∂V
∂T

)
p
. (6.7)

Problem 6.3 (Helix-coil transitions, 50 pts).
Biopolymers are often found in helix configurations, like double helices in DNA or
alpha helices in proteins. They may also be in coil configurations, which are disor-
dered, typically bendy states. These are more often found at higher temperatures,
as we often refer to the process of going from helix to coil as melting or denatura-
tion. Conversely, when a denatured biopolymer adopts its helical shape, this is often
called folding.

As a simplemodel for helix-coil character of a biopolymer, consider a biopolymer
made up of N segments that are either in a helical state or a coil state. For example, a
polymer with N = 6 segments might be HHHHCC, where the first four segments are
helical and the last two are coiled.

We will assume that a helical segment has energy ε and a coiled segment has
energy 0. (We have set the energy of the coiled state to zero since we can define an
arbitrary energy scale.)

a) We define a microstate in this model to be a list of H or C values for each seg-
ment. E.g., a microstate for N = 6 might be HHHHCC as we saw above, or
HCCHCH. Let n be the number of segments that are helical. How many mi-
crostates are consistent with a given n?

b) What is the energy of a given microstate?

c) Write down the probability mass function P(n). This will involve computing
the partition function. You should be able to write the partition function in a
concise format if you make use of the binomial theorem.

d) Show that the average number of helical segments is

⟨n⟩ = x ∂ ln Z
∂x , (6.8)
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where x = e−β ε . From this, compute the average fraction of helical segments,
f = ⟨n⟩/N.

e) Sketch the average number of coiled segments versus temperature.

f ) In the model we have used so far, there is a gradual transition from helical
states to coiled states as the temperature rises. As a biopolymer transitions
from being mostly helical to mostly coiled, it goes through states with het-
erogenous helix-coil regions. As an alternative model, we can consider an all-
or-none model, in which all segments are helical, or all segments are coiled.
There are then two microstates, HHHHH... and CCCCC.... Compute the
probability that a given biopolymer is coiled as a function of temperature and
make a sketch of this probability. How does this differ from your results in
parts (d) and (e)?
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