
BE 25Winter 2025
Homework #6

Due at 9 AM PST, February 25, 2025

Problem 6.1 (Connections between free energy and entropy, 25 pts).
Consider a system whose microstates are described by the Boltzmann distribution,
that is the probability of realizing microstate i is

Pi =
e−βEi

Z , (6.1)

where β = 1/kBT and

Z =
∑

i

e−βEi (6.2)

is the partition function. Given the probability mass function above, that the free
energy, often called the Helmholtz free energy, is F = −kBT ln Z, and the result we
derived in lecture, S = kB β ⟨E⟩+ kB ln Z, show the following results.

a) Show that the expectation value of the energy, ⟨E⟩, is

⟨E⟩ = −∂ ln Z
∂ β =

∂ βF
∂ β . (6.3)

b) Show that F = ⟨E⟩ − TS.
c) Show that S = −∂F/∂T.

As we discussed in lecture, taken together these results show that the free energy is
a Legendre transform of the energy. Hint: It is up to you, but I found in all cases that
it is easier to start with the right hand sides of the above equations and verify that
they equal the left.

Problem 6.2 (Grouping microstates, 10 pts).
As a motivating example for this problem, consider a biomolecule that can be in a
helical or coiled state. However, there are several microstates corresponding to the
helical state. For example, there are many configurations of the molecule due to
bond vibrations that are still classified as helical. Similarly, there are several other
microstates corresponding to the coiled state.

Now let us generalize. Imagine we have a set of microstates for a system and
we can put each microstate into a specific group. We will refer to these groups as
macrostates. In themotivating example, we have twomacrostates, helical and coiled.
Wewill index themacrostates with i and themicrostates within eachmacrostate with
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j such that the energy of microstate j in macrostate i is Eij and the partition function
for the system is

Z =
∑

i

∑
j

e−βEij . (6.4)

Show that the probability of the system being in macrostate i is

pi =
e−βFi

Z , (6.5)

where Fi is the free energy of macrostate i. That is, Fi is the free energy of a system
that consists only of microstates in macrostate i.

Problem 6.3 (From discrete to continuous, Boltzmann to Gaussian, 15 pts).
This problem was inspired by problem 10.14 of Dill and Bromberg.

In this problem we will explore how a Gaussian distribution arises from a Boltz-
mann distribution when the energy is a quadratic function of an observed variable.
We will do this through a simple example problem.

Imagine a protein that binds a ligand. When the ligand is a distance x0 from the
center of the protein, the energy of the ligand-protein interaction is minimal. We
can write down the energy as a function of the position x of the ligand relative to the
center of the protein, E = E(x). We do not know what E(x) is, so we can write it as
a Taylor expansion about x0,

E(x) = E0 +
dE
dx

∣∣∣∣
x=x0

(x − x0) +
1
2

d2E
dx2

∣∣∣∣
x=x0

(x − x0)
2 + · · · . (6.6)

The first derivative vanishes at x0 because that position has minimal energy. Trun-
cating the Taylor series to second order, we have

E(x) = E0 +
k
2
(x − x0)

2, (6.7)

where we have defined the spring constant

k ≡ d2E
dx2

∣∣∣∣
x=x0

. (6.8)

a) Let P(x) be the probability that the ligand is at position x. Write down the
x-dependence of P(x), ignoring any normalization constants.

b) From your expression in part (b), you can derive a normalization constant.
In class, we have been considering discrete states, but here, x is continuous.
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While there are subtleties to moving from a discrete distribution to a continu-
ous, in many applications you can in practice simply replace∑

all values of x

−→
∫

dx. (6.9)

Perform the necessary integral (or otherwise reason the result) to get the nor-
malization constant and write a complete expression for P(x).

c) What is the average position, ⟨x⟩?
d) What is the mean square deviation from this position, ⟨(x−⟨x⟩)2⟩, also called

the variance? Importantly, comment on how the variance depends on the ther-
mal energy kBT. (It will help you to notice that the distribution you derived is
Gaussian, also called normal.) Finally, sketch P(x).

Problem 6.4 (Bounds on susceptibilities, 25 pts).

a) Prove that the isothermal compressibility κ T is positive for a thermodynami-
cally stable system with a constant number of particles.

b) We showed in lecture that thermodynamic stability requires that Cp > 0.
Show that in addition to Cp > 0 and κ T > 0, thermodynamic stability re-
quires that

κ T Cp

VT − α 2 < 0, (6.10)

for a system with a constant number of particles, where α is the thermal ex-
pansivity. This means that while α can be positive or negative (or zero), it is
nonetheless constrained in the values it may take.

As a reminder,

Cp = T
(
∂S
∂T

)
p
, (6.11)

κ T = − 1
V

(
∂V
∂p

)
T
, (6.12)

α =
1
V

(
∂V
∂T

)
p
. (6.13)
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Problem 6.5 (van der Waals fluids, 25 pts).
An equation of state for a van der Waals fluid is

p =
NkBT

V − Nb − N2a
V2 , (6.14)

where a and b are positive constants.

a) Consider a plot of p vs v, where v = V/N is the molar volume (the inverse of
the number density), for a given temperature. What must be true about this
curve for the fluid to be thermodynamically stable for all densities?

b) The critical point is established at the temperature below which the fluid can
exhibit a thermodynamic instability. Provide reasoning as to why the critical
point occurs when(

∂p
∂v

)
T
=

(
∂2p
∂v2

)
T
= 0. (6.15)

c) Find the critical point (kBTc, vc, pc) in terms of the constants a and b.
d) Define reduced variables p̃ = p/pc, T̃ = T/Tc, and ṽ = v/vc. Write the

above equation of state in terms of the reduced variables. In doing so, does
any a- or b- dependence remain?

e) Use a computer to make a plot p̃ versus ṽ for T̃ = 0.9, 1, and 1.1. Comment
on what you see in the plots.

f ) What do you think would happen if we controlled the temperature and pres-
sure such that T̃ = 0.9 and p̃ = 0.5?
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