
BE 25Winter 2025
Homework #4

Due at 9 AM PST, February 4, 2025

Problem 4.1 (Britton Chance and enzyme kinetics, 50 pts).
The stopped-flow method for studying chemical kinetics was pioneered by Britton
Chance. He developed the technology during his Ph.D. thesis in the late 1930s and
used it to study enzyme-catalyzed reactions. By 1940, he had achieved key results,
but was drafted to work in the secret radar lab at MIT as part of the war effort.
Nonetheless, in 1943 he managed to publish is results in a landmark paper (Chance,
J. Biol. Chem., 151, 553–577, 1943).

In this paper, he used his newly developed stopped-flow technology to measure
the kinetics of the breakdown of hydrogen peroxide (the substrate) by peroxidase (the
enzyme) with a colorimetric readout. Though Michaelis and Menten had written
down their famous reaction mechanism

E + S
k1−−⇀↽−−

k−1
ES k2−−→ E + P, (4.1)

in 1913, andBriggs andHaldanehad expandedon their ideas in 1925, prior toChance’s
stopped-flowexperiments, no onehad ever seen the proposed enzyme-substrate com-
plex. Chance sought to directly observe the complex. He also sought to examine if
the rapid steady-state approximation of Michaelis and Menten or the quasi-steady
state approximation of Briggs and Haldane was more appropriate.

a) TheMichaelis-Menten equation gives the rate of production of product P as a
function of the total enzyme concentration c0

E and the substrate concentration
cS. In lecture, we used the QSSA to derive theMichaelis-Menten equation, as
done by Briggs and Haldane in 1925. Michaelis andMenten, however, did not
use the QSSA. Rather, they applied a fast steady state approximation in which
they assumed that the forward and reverse rates of the enzyme-substrate bind-
ing/unbinding reactions were equal. Derive the Michaelis-Menten equation
(that is, the expression for dcP/dt) using this approximation. Be sure to show
explicitly what the expressions are for vmax and KM.

b) In his stopped-flow experiment, Chance measured both the concentration of
the product (P, degraded hydrogen peroxide) and the enzyme-substrate com-
plex (ES, peroxidase bound to hydrogen peroxide). Chance wanted to see how
his measurements compared to the theory given by the Michaelis-Menten re-
action scheme. Note that he was explicitly observing the enzyme-substrate
complex, so he needed to solve the full mass action kinetics system of ordinary
differential equations without making any approximations such as the rapid
steady-state approximation or the quasi-steady state approximation. He had to
resort to numerical calculation in the late 1930s to do so. In Chance’s words,
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“This was the first study of enzyme kinetics by a machine computer. Theme-
chanical equation solver, approximately 75 feet long, consisted of geared mul-
tipliers and ball-and-disc integrators that set up each parameter and turned out
mechanical solutions of the differential equations for exhaustion of substrate
and formation and decomposition of the enzyme-substrate compounds.” The
computer is shown in the picture below.
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behavior, suggesting that the dominant intermediate
in this time range was the red ‘complex I’ of per-
oxidase and peroxide. The lifetime of the enzyme–
substrate compound was strictly proportional to the
peroxide concentration. Perhaps most importantly, it
was possible to superpose the measured curves for the
intermediate and product concentrations on differen-
tial analyzer solutions of the non-linear differential
equations for enzyme action. This result unquestion-
ably identified the role of the intermediate compound
in enzyme action.

The mechanical differential equation
solver, 1939

The flow apparatus had revealed the kinetics of
formation and decomposition of an enzyme–substrate
compound and it was necessary to prove that the traces
followed a Michaelis–Menten mechanism. While
steady-state solutions were possible for the peak of the
formation of the enzyme–substrate compound, it was
not satisfying to me to fit the data at only one point
in time. But try as I could, I found no ready solution
for the non-linear differential equations. Without an
analytic solution of the complete kinetic curves for
the formation of the intermediate, disappearance of
substrate and appearance of product, I had no way to
portray theoretically what could be determined exper-
imentally. Thus, I turned to a mechanical differential
equation analyzer.

The Johnson Foundation was by no means barren
of stimuli for using a differential analyzer to study en-
zyme kinetics. In fact, Alan Burton had built such a
fluid-flow model of consecutive reactions and had ap-
plied it to a series of consecutive reactions. Although
this system was unrelated to enzyme action, it read-
ily demonstrated the steady state and it provided a
vivid model of a kinetic system with dynamic inputs
and outputs. The intellectual stimulus for a quanti-
tative treatment of enzyme kinetics thus was already
present, and communications with Dr J.G. Brainerd,
subsequently Dean of the Moore School, elicited great
enthusiasm for the project. Using appropriate kinetic
constants and concentrations, we were able to plot out
the complete solutions to the non-linear differential
equations for substrate disappearance, product form-
ation, and the concentration of the enzyme–substrate
compound. Simulations of the reaction were run under
six conditions that overlapped the experimental con-
ditions, and the computer solutions agreed well with

the experimental measurements (for catalase and cy-
anide reaction, see Chance 1943c). Although complete
profiles of the uncertainties in the parameter values
were not made, changing the parameters by ±10%
resulted in altered kinetic profiles that clearly justified
the choice of parameters for fitting the experimental
results. This was the first study of enzyme kinetics by
a machine computer.

The mechanical equation solver, approximately 75
feet long, consisted of geared multipliers and ball-
and-disc integrators that set up each parameter and
turned out mechanical solutions of the differential
equations for exhaustion of substrate and formation
and decomposition of the enzyme–substrate com-
pounds (Figure 4 shows a photo of this ‘monster’).
The solutions simulated the experimental data over
the whole time range when the rate constant of the
‘on’ reaction of peroxidase with H2O2 was taken to
be 1.2 × 107 M−1 s−1, showing that this was essen-
tially an irreversible reaction in contra-distinction to
the assumptions of the Michaelis–Menten theory. The
turnover of the enzyme was found to be proportional
to the hydrogen donor concentration, and for the re-
action with leuco-malachite green in acetate buffer
had a rate constant of 3 × 105 M−1 s−1. The Michaelis
constant for peroxide was found to be a few micro-
molar in the presence of ∼10 µM leuco-malachite
green.The activity of peroxidase could thus be de-
scribed well by a second-order reaction of the enzyme
with H2O2, followed by a second-order irreversible
reaction for the reaction of the enzyme–substrate in-
termediate with the hydrogen donor. Extension of the
Michaelis–Menten theory to a second-order reaction

Figure 4. Mechanical computer, used by the author, with J.G.
Brainerd, in 1939, to solve the non-linear differential equations
representing enzyme–substrate kinetics at the Moore School of
Engineering at the University of Pennsylvania.

Figure 1: The computer Chance used to numerically solve the system
of ODEs arising from the Michaelis-Menten chemical reaction scheme.
Taken from Chance, Photosynthesis Research, 80, 387–400, 2004.

Fortunately, we now know how to numerically solve the ODEs with an
electronic computer (andmaybe even someday with a quantum computer)! We
will use this capability to perform a curve fit to estimate the parameters k1, k−1
and k2. We will fit the enzyme-substrate complex data to the theoretical curve
found from solving the ODEs. Toward that end, complete the code below to
obtain the parameter estimates. Report your estimates.

import numpy as np
import scipy.optimize

# Chance's concentrations in his experiment
cs0 = 4.0 # Initial substrate concentration in micromolar
ce0 = 1.0 # Total enzyme concentration in micromolar

# Time points for product in units of seconds
t_p = np.array([0.032, 0.061, 0.102, 0.175, 0.274, 0.344,

0.451, 0.624, 0.700, 0.874, 0.967, 1.043,
1.219, 1.525])

# Concentration of product in units of micromolar
c_p = np.array([0.131, 0.172, 0.344, 0.569, 0.918, 1.237,

1.854, 2.554, 3.103, 3.656, 3.901, 4.010,
4.033, 4.007])

# Time points for enzyme-substrate complex in units of seconds
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t_es = np.array([0.007, 0.040, 0.073, 0.134, 0.245, 0.306,
0.411, 0.583, 0.657, 0.832, 0.935, 0.997,
1.181, 1.351, 1.712])

# Conc. of enzyme-substrate complex in units of micromolar
c_es = np.array([0.353, 0.688, 0.811, 0.844, 0.855, 0.844,

0.802, 0.711, 0.655, 0.472, 0.340, 0.282,
0.137, 0.074, 0.019])

# YOU MAY NEED TO WRITE OTHER FUNCTIONS HERE

# Initial concentrations
c0 = np.array([cs0, ce0, 0, 0])

def ces_theor(t, log_k1, log_km1, log_k2):
"""Theoretical concentration of ES as a function of time.
Rate constants are inputted as logarithms to ease curve
fitting.

Parameters
----------
t : Numpy array

Time points for which the solution of desired
log_k1 : float

Logarithm of the rate constant k1.
log_km1 : float

Logarithm of the rate constant k_minus_1.
log_k2 : float

Logarithm of the rate constant k2.

Returns:
output : Numpy array, same length as `t`

Concentration of enzyme-substrate complex over time.
"""
# COMPLETE THIS FUNCTION
# It can and should use `c0`, even though it is not
# passed in.

# Perform curve fit
popt, _ = scipy.optimize.curve_fit(ces_theor, t_es, c_es)

# Convert parameters from logs
k1, km1, k2 = np.exp(popt)

c) Plot Chance’s data for both the enzyme-substrate complex concentration and
the product concentration versus time. Overlay the respective curves given by
solving the kinetic equations. Comment onwhat you see. (Note that theremay
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be some systematic variation of themeasured product concentrations from the
theoretical curve, and Chance commented on these data in particular in his
paper: “The scatter of points is thought to represent an instrumental rather
than intrinsic irregularity.”)

d) Given the parameter estimates you obtained, which approximation is more
appropriate in this case, the rapid steady-state approximation of Michaelis
and Menten or the quasi-steadty state approximation of Briggs and Haldane?
Couldwehavefigured this outwithout directly observing the enzyme-substrate
complex (that is, by only observing substrate depletion and/or product pro-
duction)?

Problem 4.2 (HIV protease inhibitors and pH dependence, 50 pts).
This problem is based on problem 4.10 of WTHS. Some enzymes, such asHIV protease,
exhibit pH-dependence on their catalytic activity. As a simple example, imagine an
enzyme that can bind substrate in its protonated state, but not in its unprotonated
state. That is, it has the following reaction scheme.

E− + H+ ka−−⇀↽−−
k−a

EH, (4.2)

EH + S
k1−−⇀↽−−

k−1
SEH k2−−→ EH + P. (4.3)

a) Derive an expression for the reaction velocity,

v0 =
dcP

dt . (4.4)

This should be an analytical expression, and you will need to make approxi-
mations to derive it. Be sure to clearly state which approximations you use. It
should be written in terms of c0

E, cS, and cH+ . Does the resulting expression
match a Michaelis-Menten form? If so, what are the effective kcat and KM?

b) In the presence of an inhibitor, such as HIV protease inhibitors used in some
treatments, the situation gets more interesting. In an inhibitor could also bind
the enzyme in either the protonated or unprotonated form, giving additional
reactions

E− + I
k−i−−⇀↽−−
k−−i

IE−, (4.5)

EH + I
ki−−⇀↽−−

k−i
IEH. (4.6)

The inhibitor-bound unprotonated enzyme may also be protonated.

IE− + H+ ki
a−−⇀↽−−

ki
−a

IEH, (4.7)
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though, for reasons we will learn about later in the course, this last reaction is
dispensible.

For this inhibited scheme, derive an expression for the reaction velocity,
again making appropriate approximations. It should be written in terms of c0

E,
cS, cH+ , and now also cI. Does the resulting expression still match aMichaelis-
Menten form?

c) How do the effective kcat and KM you found in part (b) depend on pH, if at all?

d) Does it matter whether the inhibitor binds more readily to the unprotonated
or protonated state of the enzyme? Explain.
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