BE 25 Winter 2025
Homework #2
Due at 9 AM PST, January 21, 2025

Problem 2.1 (Protein misfolding, 35 pts).

This problem is based on Problem 15.17 of KKW. Imagine a test tube with buffer condi-
tions such that it is full of denatured protein (D). The buffer conditions are suddenly
changed such that the denatured protein can fold into one of two configurations, a
natively folded configuration (N) or a misfolded configuration (M). That is, the fol-
lowing two reactions may happen.

D XN, (2.1)
D25 M. (2.2)

In the experimental setup, we can only measure the concentration of folded (natively
or otherwise) protein over time. That is, we can only monitor the reaction

D X folded. (2.3)

It is determined that ki = 15 s~!. Though it is not fast enough to measure kinetics,
another experimental technique can measure the ratio of natively folded to misfolded
proteins. After along time (presumably at steady state), it is determined that the ratio
of the concentration of natively folded proteins to the concentration of misfolded
proteins is 9. From these measurements, deduce the values of k; and k.

Problem 2.2 (Rate limiting steps, 30 pts).

Section 15.10 of KKW provides a nice discussion on rate limiting steps in which they
demonstrate through a simple cascade-style reaction A —— B —— C that the
slowest step of a reaction scheme establishes its overall rate. While that example is
illuminating, we can develop a more general result for cascading reactions without
the need to explicitly integrate the resulting first-order linear differential equations
using integrating factors, as KKW do in Box 15.2. Note that cascading reactions
are commonly encountered in cellular dynamics, for example in signaling networks
involving multiple phosphorylations.

Consider a transformation that requires 7 steps,

X, X, (2.4)
X, 2 X, (2.5)
(2.6)



kn
X, — Xn+17 (27)

where conversion from X, to X,,, is the process we are interested in. For notational

ease, let the concentration of species X; be x;. Say we initially start with x; (0) = x]

0

andx; = Oforalli > 1.

2)

b)

d)

Write down a system of ODEs for this reaction system. To do so, you can write
an expression for dx; /dt, dx,, . /d¢, and dx;/dt for 2 < i < n.

Show that there is a conservation law such that we can eliminate one of the
ODEs. Specifically, use the conservation law to write an expression for x;, |
in terms of all of the other concentrations so that we no longer need to consider
dx,,+1/dt explicitly in the dynamical equations.

Write the dynamical equations as a matrix equation,

dx
—=A. 2.8
XA (29)
where
X1
X2
x=1|.1. (2.9)
Xn

That is, write down the matrix A.

The solution to a linear system of ordinary differential equations, as we have
here, is

x(1) = Z a;viet’ (2.10)
i=1

where A, is the ith eigenvalue of A and v; is the corresponding eigenvector.

The constants g; are determined by the initial condition. Recall that the eigen-

values of A are found by solving det(A— A1) = 0, where | is the identity matrix.

Recall also that the determinant of a lower triangular matrix is the product of its

diagonal elements. Show that the eigenvalues of A are 1, = —k;, 1, = —k;,
oy An = —ky.

You have just shown that the dynamics are given by the sum of decaying ex-
ponentials with decay constants given by the rate constants. Imagine there is
a spectrum of rate constants, with 72 of them being of a similar order of mag-
nitude, and n — m of them being much, much larger. Explain why the rate of
production of X,,, is determined only by the m small rate constants, meaning
that only the slow reactions contribute appreciably to the dynamics of product
formation.



Problem 2.3 (Switching time of bacteria, 35 pts).
This problem is based on a thought experiment proposed by Robijn Bruinsma in Bruinsma,
Physica A, 313, 211-237, 2002.

Say we are interested in assessing how fast a bacterial cell can respond to a change
in environment. Specifically, imagine a cell is in a sea of delicious lactose and sud-
denly the lactose is washed away. The cell should then repress expression of [3-
galactosidase by having a repressor bind to the appropriate operator. Of course, many
other mechanisms will be at play in the cellular response, but the fastest the response
could possibly be is given by how fast the repressor could bind to its operator.

To establish this speed limit, imagine the following experiment. Many short
oligonucleotides are in a buffered solution with concentration ¢ (where the sub-
script D means “DNA?”). Suddenly, at r = 0, repressors are added to give a concen-
tration ¢ with ¢ < 3. The repressors are added in such a way that the volume
of the reaction mixture does not change appreciably. The repressors bind reversibly
according to

D +R Z:\ DR. (2.11)

d

In this experiment, the concentration of repressor, cy, is monitored over time.

a) Show that at short times, cg (¢) o< e~"/7. Write an expression for 7.

b) In similar in vitro experiments, it was determined that k, ~ 10'* M~ 's~! and

kg ~ 1072 s~!. Given than an E. co/s cell has a volume of about one femtoliter,
estimate the characteristic time it takes for the repressor to bind the operator.
That is, plug numbers into your expression for 7. (Note that in a cell, the
condition that ¢ < ¢ does not hold, but we can still take the response time
to be approximately 7.)

c) We already reasoned that 7 is a lower bound on the switching time of a bac-
terium. We can say further that this is a lower bound on the time it takes re-
pressor to bind. Why?



