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1 Why study biophysical chemistry?

This course is entitled Biophysical Chemistry. The subject of biophysical chemistry
has several meanings, depending on whom you are asking. A course on this topic at
one university may look quite different from one at another.

So, what is biophysical chemistry within the context of this course? We will look
at what it could be, and then discuss what our main goals are.

1.1 It could be a theoretical topic list

Biophysical chemistry is often split into two pieces, study of dynamics and study of
equilibria. The former is referred to as chemical kinetics and the latter as thermo-
dynamics. Strangely, the word “dynamics” is part of thermodynamics, but thermo-
dynamics is not really a study of how systems change over time, but rather how they
behave at equilibrium, which is usually their steady-state, static behavior.1 The top-
ics do have contact points where they are related, but by and large can be studied
separately.

Common topics in thermodynamic study of biochemical systems include

• Statistical mechanics,

• Thermodynamic potentials,

• Equilibrium conditions,

• Solution thermodynamics,

• Stability and phase separation,

• Electrochemistry.

In the study of chemical kinetics, the following topics are often included.

• Mass action

• Determination of rate constants (activation energy, transition state theory)

• Thermal diffusion

• Mathematical solution of rate equations

• Enzyme kinetics

There are of course more, but these topics are common and in many ways foun-
dational.

1The etymology of the term is not even clear!
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1.2 It could be a list of techniques

Somuch of physical biochemistry involves measuring properties related to the above
topics. As the list of topics falling under the umbrella of biophysical chemistry is
long, so is the list of measurement techniques. Some of the common ones covered
in courses like this one are

• Stop flow reactors,

• Continuous flow reactors,

• Batch reactors,

• Absorbance,

• Fluorescence,

• Scattering,

• Fluorescence anisotropy,

• Fluorescence resonance energy transfer,

• Sedimentation,

• Differential scanning calorimetry,

• Isothermal titration calorimetry,

• Equilibrium dialysis,

• Surface plasmon resonance,

• Voltammetry,

• Many more!

Through studying these techniques, the theoretical underpinnings must also be
mastered, and many courses are structured around techniques.

1.3 It could just be structural biology

For many instructors, biophysical chemistry is all about structural biology. Topics
include

• Secondary structure,

• Tertiary structure,

• Structural domains and motifs,

• Structural dynamics,
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• Electrostatics,

• Polar/hydrophobic interactions.

There are also myriad structural techniques, including

• X-ray crystallography,

• Electron microscopy,

• Nuclear magnetic resonance,

• Mass spectrometry,

• Many more!

1.4 It could be foundational for understanding life

In his book, What is Life?: Five Great Ideas in Biology, Paul Nurse writes, “Most as-
pects of life can be understood ratherwell in terms of physics and chemistry, albeit an
extraordinary form of chemistry that is highly organized, and of sophistication that
cannot be matched by any inanimate process.” He goes on to say, “Ultimately, life
emerges from the relatively simple and well-understood rules of chemical attraction
and repulsion, and the making and breaking of chemical bonds.” From this perspec-
tive, a clear understanding of biophysical chemistry is essential to understand the
living world.

1.5 It could be foundational for engineering life

Bioengineers use the molecules of the living world as building materials for the sys-
tems they engineer. As is the case with steel or concrete, the engineer needs to know
their building materials to use them effectively. Some courses, such as those that
use the book by Wittrup, Tidor, Hackel, and Sarkar (one of the textbooks for this
course), take an engineering approach to biophysical chemistry, with an eye toward
using biomolecules as engineering material.

1.6 So, what is biophysical chemistry for this course?

In this course, we will focus both on chemical kinetics and thermodynamics with
an eye toward engineering (though that is not our only goal). While these lecture
notes will provide most of the material, they are based upon and complement the
books byWittrup, Tidor, Hackel and Sarkar (Quantitative Fundamentals of Molecular
and Cellular Bioengineering) and Kuriyan, Konforti, and Wemmer (The Molecules of
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Life: Physical and Chemical Principles). We will introduce measurement techniques
as we go along, but they will not be the main focus of the course. We will not delve
too much into structural biology. (Caltech has two or three courses on structural
biology offered in the Biochemistry and Molecular Biophysics Option.)

Traditionally in chemical and bioengineering curricula, thermodynamics is taught
before kinetics. Indeed inKuriyan, Konforti, andWemmer’s book, thermodynamics
is also presented first. Inmy experience, and in those shared by students I know, ther-
modynamics tends to be a conceptuallymore difficult subject than chemical kinetics.
Of course, as you dive deeper into the respective subjects, you will find richness and
subtlety, and both subjects will present difficult problems and opportunities for hard
thinking. But for an early foray into these subjects, as we are embarking on here, I
think that chemical kinetics is a less intimidating subject and a natural one to begin
with.

So, we will spend the first half of the course learning about chemical kinetics,
mostly from the perspective of mass action kinetics, with special focus on enzyme
catalyzed reaction dynamics. In the second half of the course, wewill introduce ther-
modynamics starting with a statistical description of entropy and building out the
thermodynamic potentials from there. We will then explore classic topics of founda-
tional importance such as solution thermodynamics and equilibrium conditions.

The hope is that at the end of the course, you will be equipped to proceed with
your training as a bioengineering. Indeed, almost all of the courses in the Caltech
Bioengineering curriculum build off of the topics presented in this course.
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Part I

Kinetics
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2 Mass action kinetics

In this lesson, we will explore concepts behind mass action kinetics through a series
of examples and intuitive reasoning.

We will first reason the main idea behind mass action kinetics, that the rate at
which a chemical reaction proceeds is proportional to the product of the concentra-
tions of its reactants. We will then discuss some techniques for solving the resulting
differential equations describing the dynamics of concentrations of chemical species.

2.1 A simple illustrative example: Exponential decay

Let us first dive into chemical kinetics with a simple example. Imagine we have a
small test tube that has a solution of RNA oligomers, all with the same sequence, in
it. This is somethingwe could buy, for example, from IntegratedDNATechnologies.
These are usually kept frozen, but we are going to just let this solution sit out on the
bench top at room temperature. Even in the absence of ribonucleases that we are
constantly shedding and can rapidly degrade RNA, RNA degrades rather quickly.
Of course the rate of degradation is highly dependent on buffer conditions, but as
a rough estimate, the half life of RNA at room temperature is on the hours-to-days
time scale. So we ask the question, what is the concentration of RNA in the test tube
over time? More specifically, if we define by c to be the concentration of RNA in the
test tube, we would like to write an expression for c(t), taking c(0) = c0. For our
sake of discussion here, let us say that c0 = 10 nM.

Let us try to reason what c(t) may be by performing a thought experiment. We
do not really know the process by which the RNA may degrade, but we can assume
a very simple process in which within a small window of time of length Δ t an RNA
molecule has some probability of degrading. Let’s say that probability is θ . So, the
probability that an RNA molecule does not decay in a small time window of length
Δ t is 1 − θ . Let us now consider a single RNA molecule. At time zero, it has not
decayed. At time Δ t, it has a probability of 1− θ of still being around. At time 2Δ t,
it has a probability of (1− θ )2 of still being around, since it had a probability of 1− θ
of not decaying in the first time window and a probability of 1 − θ of not decaying
in the second time window. Note here that we are assuming each time window is
independent. So, in time t = nΔ t, the probability that the RNA molecule will still
be around is (1 − θ )n. We can write the probability that a given molecule has not
decayed as

Pnot decayed(t) = (1− θ )n = (1− θ )t/Δ t =
(
(1− θ )1/Δ t)t

, (2.1)
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since t = nΔ t. Now, if we define

k = − 1
Δ t ln(1− θ ), (2.2)

which is strictly nonnegative, since 0 ≤ θ ≤ 1, so that

(1− θ )1/Δ t = e−k, (2.3)

we have

Pnot decayed(t) = e−kt. (2.4)

So, the probability of being around decays exponentially over time.2

Ifwe assumeeachRNAmolecule in our test tube is independent andhas the same
kind of decay process, we can write that the number of non-decayed RNAmolecules
is

Nnot decayed(t) = N0 Pnot decayed(t) = N0 e−kt = c0V e−kt, (2.5)

whereN0 is the initial number of RNAmolecules, which is given byN0 = c0V, where
V is the volume of our little test tube. To get the concentration, we have c(t) =
Nnot decayed(t)/V, or

c(t) = c0 e−kt. (2.6)

With this solution, we can make a plot of the concentration of RNA over time,
assuming we start with c0 = 10 nM. If the half life is about 10 hours, we can estimate
k.

c(t1/2)

c0
=

1
2
=

c0 e−kt1/2

c0
= e−kt1/2 ⇒ k =

ln 2
t1/2
≈ 0.07 hr−1. (2.7)

We could use a computer to generate a plot for this, but it often helps intuition to
sketch a plot. Such a sketch is shown in Fig. 1. When making sketches of exponential
decays, I use the rule of thumb that the level decays to about a third of its starting
level in time 1/k, in this case about 14 hours.

While this is a pleasing result that followed from our thought experiment and
applying a bit of probability, as will become clear as we work through this lesson,
we almost always first write expressions for concentrations over time as differential
equations. Differentiating the above expression with respect to time, we have

dc
dt = −k c0 e−kt = −kc. (2.8)

2I have been a bit cavalier here. To be more formal, you can read about how an Exponential dis-
tribution is a continuous analog of a Geometric distribution.
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Figure 1: Time course of degradation of RNA in a test tube.

This is an interesting result. The rate of decay (which is −dc/dt) of the RNA is
directly proportional to the concentration of the RNA. This makes sense if we do
another little thought experiment. Say we have two test tubes, one with twice as
concentrated RNA as the other. Then, at any small time window, there are twice as
many decay events in the more concentrated tube than the other. So the change in
concentration per unit time (that is the time derivative of the concentration) should
be proportional to the concentration of the species undergoing the decay.

Aswewill further explore, if we consider a chemical reaction,mass action kinet-
ics dictates that the rate at which a reaction proceeds is proportional to the product
of the concentrations of its reactants. For our present example of decaying RNA
molecules, the reaction is RNA −−→ ∅. We defined c as the concentration of RNA,
so the rate of reaction, in this case decay, is proportional to c, or

rate of reaction = kc, (2.9)

where k is the constant of proportionality, referred to as a rate constant. Since RNA
is degraded, the rate of reaction is given by the negative time derivative of the RNA
concentration, or

rate of reaction = −dc
dt = kc. (2.10)

2.2 Another illustrative example: dimer formation

Let us now consider another process, that of dimer formation. Say we have a protein
A that forms dimers at a certain pH, but is monomeric at a different pH.We start off
with lots of monomeric A around and then suddenly change the pH so that dimers
can form. The chemical reaction here is

A + A −−→ AA. (2.11)

We can again do a thought experiment here. Let’s say that if two A molecules are
adjacent to each other, they may undergo a dimerization reaction with probability θ
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in some small time window. To consider adjacency, let us divide up the space in our
test tube into N little boxes, and each box may contain an Amonomer, an AA dimer,
or solvent. We will consider one box in particular, which we will call “Our Box.”
The probability that an A monomer is in Our Box at a given time is NA/N, where
NA is the number of A monomers in the test tube. In three dimensions, there are six
adjacent boxes to Our Box, so the probability than an Amonomer is in at least one of
those boxes is one minus the probability that no Amonomers are adjacent, or

1−
(

Ns + NAA

N

)6

, (2.12)

where Ns is the number of boxes containing solvent, such that Ns + NA + NAA = N.
Using this relation, we can rewrite the probability that an A monomer is in at least
one of the boxes as

1−
(

Ns + NAA

N

)6

= 1−
(

1 +
NA

Ns + NAA

)−6

. (2.13)

Thus, the probability of a reaction happening at Our Box in some small time window
Δ t is

θ NA

N

(
1−

(
1 +

NA

Ns + NAA

)−6
)
. (2.14)

We can approximate and simplify this expression by noting that typically Ns ≫
NA,NAA, such that N ≈ Ns and Ns + NAA ≈ N, giving

prob. of rxn in Our Box in Δ t ≈ θ NA

N

(
1−

(
1 +

NA

N

)−6
)

(2.15)

Further, because NA/N≪ 1, we can perform the Taylor expansion(
1 +

NA

N

)−6

= 1− 6NA

N +O

((
NA

N

)2
)

(2.16)

to get

prob. of rxn in Our Box in Δ t ≈ 6θ
(

NA

N

)2

. (2.17)

All of the other boxes in the test tube are the same as Our Box, and if we assume
they are all independent, then the probability of having a dimerization reaction in
some small time window is

prob. of rxn in Δ t ≈ 6Nθ
(

NA

N

)2

. (2.18)
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This means that the rate of production of dimers (considering Δ t) is proportional to
this expression, or

rate of dimer production =
dNAA

dt ∝ N2
A

N . (2.19)

Remember that we divided the volume of the test tube up into boxes. The total num-
ber of boxes is proportional to the volume V. N is proportional to V, which means
that

dNAA

dt ∝ N2
A

V . (2.20)

The concentration of dimers is NAA/V. Substituting this gives

V dcAA

dt ∝
N2

A

V . (2.21)

Defining the constant of proportionality as the rate constant k, and noting that the
concentration of monomer is cA = NA/V, we have

dcAA

dt = k c2
A. (2.22)

This is again the result we stated earlier as a rule for mass action kinetics; the rate of
a reaction is proportional to the product of the concentration of its reactants. Even
though both reactants in this case are A, it takes two of them to make a dimer, so we
have to square the monomer concentration in the rate expression.

2.3 Mass is conserved in chemical reactions

In our example of degradation ofRNA,wewrote the reaction asRNA −−→ ∅. Really,
we should have written RNA −−→ degraded RNA. The mass of the RNA did not
go anywhere. We could write an expression for the rate of production of degraded
RNA as

dcdegraded RNA

dt = −dc
dt , (2.23)

because for every RNA molecule that is degraded, a degraded RNA molecule is
formed.3 The total mass of RNA/degraded RNA is therefore conserved.

dctotal RNA

dt =
dcdegraded RNA

dt +
dc
dt = −dc

dt +
dc
dt = 0. (2.24)

3Of course, upon degradation, many pieces of degraded RNA are formed. Here, we are defining
cdegraded RNA to be the concentration of a molecule formed from taping together all of the pieces of a
singled degraded RNAmolecule.
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Similarly, in the dimerization example, total mass of A must be conserved. We
need to bear in mind that two monomers are consumed for every dimer that is pro-
duced, such that

dcA

dt = −2
dcAA

dt = −2k c2
A, (2.25)

so that

d(total concentration of A)
dt =

dcA

dt + 2
dcAA

dt = 0. (2.26)

Mass is in general conserved, and rate expressions must respect that.

2.4 The assumptions behind mass action kinetics

Wewent through two thought experiments to arrive at what I stated at the beginning
of this lesson, that mass action kinetics dictates that the rate of a chemical reaction
is proportional to the product of its reactants. It seems like a laborious route to a
simple, intuitive principle. But going through those thought experiments made clear
the assumptions and approximations that underlie use of mass action kinetics. Let
us recap.

1. We assumed all reactions were independent of all others happening in the test
tube.

2. We assumed there is nomemory of past events; we considered only probability
of reaction or collisions at a given moment.4

3. We assumed that the solutions were dilute. In the dimerization example, this
was specifically that N≫ NA,NAA.

Taken together, these assumptions seem pretty restrictive. However, mass ac-
tion kinetics are one of those theories that are unreasonably effective, meaning that
mass action kinetics matches experiment way more often than we might think given
these apparently restrictive conditions for which mass action kinetics applies.5

4Taken together, these two assumptions mean that we model chemical events as Poisson pro-
cesses, a concept beyond the scope of this course.

5I think the Navier-Stokes equations are another example of unreasonably effective theory. They
apply over a huge range of length scales and fluids can be treated as continua even when there are very
few particles.
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2.5 Mass action expressions for reversible reactions

In general, chemical reactions are reversible, meaning that if the reactants can be
converted to products, so too can the products be converted to reactants. However,
many chemical reaction are effectively irreversible, meaning that the reverse reaction
is so slow that it does not really happen in practice. In the RNA degradation, it is
possible that the pieces of a degraded RNAmolecule may come back together to form
an intact RNA molecules, but extremely unlikely, so the degradation reaction is ef-
fectively irreversible.

We can model reversible reactions in the same way we model irreversible ones
when it comes to writing down rate expressions. Conceptually, we just need to treat
the forward and reverse reactions as separate reactions.

As an illustrative example, consider again the dimerization reaction, except this
time it is reversible,

A + A
k+−−⇀↽−−
k−

AA. (2.27)

As is traditional, the arrows of chemical reactions are often annotated with an as-
signed chemical rate constant. This chemical reaction could instead be written as
two chemical reactions.

A + A k+−−→ AA, (2.28)

AA k−−−→ A + A. (2.29)

According to mass action kinetics, the rate of the first reaction is k+ c2
A, and the rate

of the second reaction is k− cAA.

This is fine and good for keeping track of the reactions and their rates, but we
ultimately need to write down differential equations for the concentrations of the
respective chemical species. In the forward reaction, monomeric A is consumed
(twomolecules per dimer created), and in the reverse reaction, monomeric A is pro-
duced (again, two molecules per dimer). Similarly, in the forward reaction, dimers
are produced, while they are consumed in the reverse reaction. Properly doing the
accounting, we can write down the differential equations.

dcA

dt = −2k+ c2
A + 2k− cAA, (2.30)

dcAA

dt = k+ c2
A − k− cAA. (2.31)
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2.6 Stoichiometric coef cients

We have thus far expressed the reversible dimerization reaction in two ways. First,
we write it as a single reversible reaction,

A + A
k+−−⇀↽−−
k−

AA. (2.32)

Then, we separated the forward and reverse reactions.

2 A k+−−→ AA, (2.33)

AA k−−−→ A + A. (2.34)

We can alternatively write these two reactions in another way.

−2 A + AA = 0, rate constant k+, (2.35)

2 A− AA = 0, rate constant k−. (2.36)

The idea here is that the reactions are written as a sum to zero, where the coefficient
in front of each species is its stoichiometric coefficient. In the first reaction, for ex-
ample, two monomers are consumed (hence the −2 stoichiometric coefficient) and
one dimer is created (hence the+1 stoichiometric coefficient). Similarly, in the sec-
ond reaction, two monomers are created and one dimer is consumed. Comparing to
the “arrow”way of writing reactions, as in equations (2.33) and (2.34), stoichiomet-
ric coefficients to the left of the arrow have negative signs and those to the right of
the arrow have positive signs.

2.7 Prescription for mass action kinetics

More generally, a reaction involving species S1,S2, . . . , SNs (where Ns here is the
number of species and is not to be confused with the number of solvent molecules
from earlier in this section) may be written may be written as

Ns∑
j=1

ν jSj = 0, (2.37)

where the ν j are the stoichiometric coefficients. (If a chemical species does not ap-
pear in a reaction, its stoichiometric coefficient is zero.) If there is more than one
reaction, we can write reaction i as

Ns∑
j=1

ν ijSj = 0, (2.38)
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where ν ij is the stoichiometric coefficient for species j in reaction i. For the reversible
dimerization case we can take S1 = A, S2 = AA and consider reaction 1 to be
dimerization and reaction 2 to be dissociation. Then, ν 11 = −2, ν 12 = 1, ν 21 = 2
and ν 22 = −1.

Recall that mass action kinetics dictates that the rate of a reaction is proportional
to the product of the concentrations of its reactants, and we call the constant of pro-
portionality the chemical rate constant. Defining cj to be the concentration of species
Sj and ki to be the chemical rate constant for reaction i, we can write an expression
for the rate of reaction i as

rate of reaction i = ki

Ns∏
j=1

cϕ ij
j , (2.39)

where

ϕ ij =

{
|ν ij| if ν ij < 0

0 otherwise. (2.40)

The parameter ϕ ij is defined such that only reactants are included in the rate expres-
sion. This could equivalently be written as

rate of reaction i = ki

Ns∏
j=1

c|min(0,ν ij)|
j . (2.41)

With this in hand, we can write the time derivative of cj using mass action kinetics
as

dcj

dt =
Nr∑

i=1

ν ij(rate of reaction i) =
Nr∑

i=1

ν ij ki

Ns∏
j=1

c|min(ν ij,0)|
j , (2.42)

where there are Nr total reactions.

This is all a bit formal. For clarity, let us consider an example. Consider a system
with two reversible reactions,

AB
k1−−⇀↽−−

k−1
A + B, (2.43)

AC
k2−−⇀↽−−

k−2
A + C. (2.44)

The differential equations describing the dynamics of the concentrations of the re-
spective species are then

dcA

dt = k1 cAB − k−1 cA cB + k2 cAC − k−2 cA cC, (2.45)
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dcB

dt = k1 cAB − k−1 cA cB, (2.46)

dcC

dt = k2 cAC − k−2 cA cC, (2.47)

dcAB

dt = −k1 cAB + k−1 cA cB, (2.48)

dcAC

dt = −k2 cAC + k−2 cA cC. (2.49)

You can verify conservation of total A, B, and C, respectively by showing that

dcA

dt +
dcAB

dt +
dcAC

dt = 0, (2.50)

dcB

dt +
dcAB

dt = 0, (2.51)

dcC

dt +
dcAC

dt = 0. (2.52)

2.8 Rate laws should be empirically determined

Mass action gives good expressions for reaction rates when all of the reactions and in-
termediate reactions are known. Wemay not always know the complete set of elemen-
tary steps that make up a reactions scheme, and then we can naively apply mass
action kinetics to the wrong set of reactions. It is therefore important to measure
chemical kinetics experimentally to obtain phenomenological rate laws from which
we can infer commensurate mechanisms.

Let’s see how this can lead to trouble with a simple example that will also serve
as motivation to some of the techniques we will present in the next lesson for solving
mass action dynamical equations. Say we have a protein that we know has two con-
figurations, A and B.We start with all proteins in configuration A, and then suddenly
change buffer conditions so that it may switch to configuration B.Wemight write the
chemical reaction as

A k−−→ B. (2.53)

This would give an expression for the dynamics of the concentration of B of

dcB

dt = k cA. (2.54)

Empirically, you instead find a rate law

dcB

dt = k c2
A. (2.55)
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Howcould this be? Most likely, when the empirically derived rate lawdoes notmatch
what you wrote down using mass action kinetics, there could be intermediate reac-
tions you are not considering. For example, it could be that Amust first dimerize be-
fore it can undergo its conformational change. So, the whole reaction scheme could
be

A + A
k1−−⇀↽−−

k−1
AA, (2.56)

AA k2−−→ A + B. (2.57)

So, our mass action rate expressions are

dcA

dt = −2k1 c2
A + 2k−1 cAA + k2 cAA, (2.58)

dcAA

dt = k1 c2
A − k−1 cAA − k2 cAA, (2.59)

dcB

dt = k2 cAA. (2.60)

In order to solve for the dynamics of cB, we will make the quasi-steady state ap-
proximation (QSSA), in which we assume that the intermediate species, AA, has
a time derivative that is small compared to those of the other species. (We will talk
more about the QSSA in the next lesson.) That is,

dcAA

dt ≈ 0. (2.61)

With this expression, we can solve for cAA in terms of cA.

dcAA

dt = k1 c2
A − k−1 cAA − k2 cAA ≈ 0 ⇒ cAA ≈

k1

k−1 + k2
c2

A. (2.62)

Substituting this expression into the expression for dcB/dt gives

dcB

dt =
k1k2

k−1 + k2
c2

A. (2.63)

This is the empirically observed rate law, with k = k1k2/(k−1 + k2), meaning that
the proposed mechanism is commensurate with experiment. It is not necessarily the
mechanism, but is a plausible mechanism that gives the observed rate behavior.
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3 Analytical solution to kinetics equations

Wehave learned how to write rate equations in differential form. Ultimately, we usu-
ally measure concentrations, not time derivatives of concentrations. So, we would
like to solve the differential equations that govern the dynamics of chemical systems.
In the following examples, I show some techniques for achieving analytical solutions
of the dynamical equations, including

• Solving first order linear differential equations

• Solving separable differential equations

• Using conservation of mass to reduce the number of differential equations

• Introducing extent of reaction and fractional conversion

• Making a quasi-steady state approximation

3.1 Simple decay

We already solved the example of simple decay in section 2.1. The dynamical equa-
tion is

dc
dt = −kc, (3.1)

and the solution is

c(t) = c0e−kt. (3.2)

We found the solution first, and then differentiated to get the differential equation.
This differential equation is linear first order (and also separable), so it is easily
solved. A plot of the solution for RNA degradation is sketched in Fig. 1.

3.2 Irreversible dimerization/cooperative degradation

In sections 2.2 and 2.3, we investigated irreversible dimerization. The chemical re-
action dynamical equation is

dc
dt = −kc2, (3.3)

which is the same dynamical equation we would get for irreversible cooperative de-
cay, A + A −−→ ∅, in which two molecules much first bind each other to annihilate
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themselves. (Here, c is the concentration of species A, and we have absorbed a fac-
tor of two into the traditional rate constant.) This is a separable differential equation
that we can solve in a straightforward manner. Separating the equation, we have

dc
c2 = −dt k. (3.4)

Integrating both sides yields∫ c

c0

dc′ dc′
(c′)2 = −

∫ t

0
dt′ k (3.5)

= − 1
c′

∣∣∣∣c
c0

=
1
c0
− 1

c = − kt′|t0 = −kt. (3.6)

Finally, rearranging gives

c(t) = c0

1 + c0 k t . (3.7)

We could plot this with software, but I think is is useful to sketch a solution. This
helps us gain intuition and to make comparison to other rate laws. In particular, we
would like to compare cooperative degradation with the simple degradation case we
observed earlier. Recall that for simple degradation,

c(t) = c0 e−kt. (3.8)

To make an apples-to-apples comparison, we can consider the case where they both
have the same initial degradation rate. Initially we would observe linear decay for
each mechanism, since for small t, we can expand the expressions as Taylor series.

simple: c(t) = c0(1− kt + . . .) (3.9)

cooperative: c(t) = c0(1− c0kt + . . .). (3.10)

So, we want to compare k for simple degradation to c0k for cooperative degradation.
So, in our plot containing each of the two curves, we should plot c/c0 versus kt or
c0kt. Using the rule of thumb for plotting exponential decay, the concentration de-
cays by a factor of about one-third for every time unit 1/k. Conversely, it takes two
1/c0k time units to decay to one-third of the initial concentration for the cooperative
mechanism. This can be seen by calculating

c(t)
c0

=
1
3
=

1
1 + c0kt ⇒ t = 2

c0k . (3.11)

It takes two 1/k time units to decay to about one-ninth exponentially, but eight 1/c0k
time units for cooperative degradation. So, cooperative degradation happens much
more slowly! This is shown in the sketch in Fig. 2. This is an example of key insight
afforded by analytically solving for the kinetics.

18



 
RNAconcentration ng

10

Iggy

y

Kor
1

t
t

timeunits
Figure 2: Concentration as a fraction of initial concentration due to simple de-
cay (blue) and cooperative degradation (orange). The time axis is in units of
k−1 for simple decay and in units of (c0k)−1 for cooperative degradation.

3.3 Reversible dimerization

Now we will consider the case where the dimerization reaction is reversible, such

that the chemical reaction is A + A
k+−−⇀↽−−
k−

AA. This analytical solution is more

conplicated and difficult to obtain. This section is mostly included to help motivate
numerical solutions for chemical dynamics, so you can skip this section if you like.

The dynamics for reversible dimerization are

dcAA

dt = k+c2
A − k− cAA, (3.12)

dcA

dt = −2k+c2
A + 2k− cAA. (3.13)

We now have two coupled differential equations to solve. However, we know mass
must be conserved. If c0

A is the total concentration of A units, then

c0
A = cA + 2cAA. (3.14)

We can insert cAA = (c0
A − cA)/2 into the expression for dcA/dt to get

dcA

dt = −2k+c2
A + k−(c0

A − cA) = −2k+ c2
A − k− cA + k− c0

A. (3.15)

This is again separable,∫ cA

cA,0

dc′A
−2k+ c2

A − k− cA + k− c0
A
=

∫ t

0
dt′ = t, (3.16)

where cA,0 is the initial concentration of monomeric A (not the total concentration of
A; that is c0

A). To perform the integral, we use an integral table to look up the result
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of ∫
dx

ax2 + bx + c

for the case where 4ac − b2 < 0, which is what we have here, since a = −2k+,
b = −k−, and c = k− c0

A, giving 4ac− b2 = −8k+k− c0
A − k2

− < 0. The result is

∫
dx

ax2 + bx + c =


− 2√

b2−4ac
arctanh 2ax+b√

b2−4ac
for |2ax+b|√

b2−4ac
< 1

− 2√
b2−4ac

arccoth 2ax+b√
b2−4ac

for |2ax+b|√
b2−4ac

≥ 1.

(3.17)

For convenience, we define

ζ =

(
1 + 8

k+
k−

c0
A

)− 1
2

, (3.18)

such that, in the above expression,√
b2 − 4ac =

k−
ζ . (3.19)

We also note that in the above expression,

2ax + b = −4k+cA − k− = −k−
(

1 + 4
k+
k−

cA

)
, (3.20)

such that

2ax + b√
b2 − 4ac

= −ζ
(

1 + 4
k+
k−

cA

)
. (3.21)

We define f(cA) to be

f(cA) =


arctanh

[
ζ
(

1 + 4 k+
k− cA

)]
for ζ

(
1 + 4 k+

k− cA

)
< 1.

arccoth
[

ζ
(

1 + 4 k+
k− cA

)]
for ζ

(
1 + 4 k+

k− cA

)
≥ 1.

(3.22)

Then, we have

f(cA)− f(cA,0) =
k−t
2ζ . (3.23)

This gives an implicit equation for cA as a function of t. The problem with this ex-
pression is that for a given t, cA is multivalued. The value of cA cannot jump from
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the hyperbolic arctangent part of the solution to the hyperbolic arccotangent part
of the solution. So, the initial condition dictates whether hyperbolic arctangents or
arccotangents are involved in the solution. Therefore, the solution is

cA(t) =
1
4

k−
k+

(
ζ−1 tanh

[
k−t
2ζ + arctanh

(
ζ
(

1 + 4
k+
k−

cA,0

))]
− 1
)
(3.24)

if

ζ
(

1 + 4
k+
k−

cA,0

)
< 1 (3.25)

and

cA(t) =
1
4

k−
k+

(
ζ−1 coth

[
k−t
2ζ + arccoth

(
ζ
(

1 + 4
k+
k−

cA,0

))]
− 1
)
(3.26)

if

ζ
(

1 + 4
k+
k−

cA,0

)
≥ 1. (3.27)

I show this solution not because it is illuminating; it isn’t really. I show it because
even for simple-looking reactions, the nonlinearities that present themselves inmass
action rate expressions can lead to difficult to find and difficult to interpret solutions.
This motivates numerical solution of the dynamical equations, which is the topic of
the next lesson.

I will note, however, that with some simplifying assumptions and in some limits,
we canmake approximate analytical progress, and that is helpful. Wewill not do that
here, but may see some examples later in class where this is useful.

3.4 Irreversible binding of two different species

Consider nowanew reaction, the irreversible binding of two species,A+B k−−→ AB.
The dynamical equations are

dcA

dt =
dcB

dt = −kcAcB. (3.28)

These can be cast into a single equation as follows. We define a new variable Φ ,
which we will call the extent of reaction. Generally, for species j in a chemical re-
action i, the extent of reaction i is defined as

Φ i(t) =
Nj(t)− Nj,0

ν ij
, (3.29)
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where Nj is the number of particles of species j and Nj,0 is the number of particles of
species j initially present. Note that Φ i(t) has the same value for all species j. We
define ϕ i = Φ i/V, where V is the volume of the solution, assumed to be constant,
giving

ϕ i(t) =
cj(t)− cj,0

ν ij
. (3.30)

Then, for the binding reaction we are considering at present, we can write

cA = cA,0 − ϕ , (3.31)

cB = cB,0 − ϕ , (3.32)

since the stoichiometric coefficient for both A and B is −1. Now, we get a single
differential equation (since the time derivative of constants like cA,0 are zero),

dϕ
dt = −k(cA,0 − ϕ )(cB,0 − ϕ ). (3.33)

This is separable, and we can write it as

dϕ
(cA,0 − ϕ )(cB,0 − ϕ )

= −dt k. (3.34)

To integrate the left hand side, we can do a partial fraction expansion of the integrand.∫ ϕ

0

dϕ ′

(cA,0 − ϕ ′)(cB,0 − ϕ ′)
=

∫ ϕ

0
dϕ ′ 1

cB,0 − cA,0

(
1

cA,0 − ϕ ′ −
1

cB,0 − ϕ ′

)

=
1

cB,0 − cA,0
ln
(

cA,0 − ϕ ′

cB,0 − ϕ ′

)∣∣∣∣ϕ
0

=
1

cB,0 − cA,0

[
ln
(

cA,0 − ϕ
cB,0 − ϕ

)
− ln

(
cA,0

cB,0

)]
.

(3.35)

Integrating the right hand side yields

−
∫ t

0
dt′ k = −kt, (3.36)

such that

1
cB,0 − cA,0

[
ln
(

cA,0 − ϕ
cB,0 − ϕ

)
− ln

(
cA,0

cB,0

)]
= −kt. (3.37)
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Rearranging, we have

ln
(

cA,0 − ϕ
cB,0 − ϕ

)
= ln

(
cA,0

cB,0

)
− k(cB,0 − cA,0)t. (3.38)

Evidently, the logarithm of the ratio of the concentrations of A and B decays linearly
with time. This can be solved for ϕ to give

ϕ (t) = cA,0 − w cB,0

1− w , (3.39)

where

w(t) = cA,0

cB,0
e−k(cB,0−cA,0)t. (3.40)

The concentrations cA(t) and cB(t)may then be calculated using

cA(t) = cA,0 − ϕ (t), (3.41)

cB(t) = cB,0 − ϕ (t). (3.42)

Note that this solution only works when cA,0 ̸= cB,0. When cA,0 = cB,0, the
situation is identical mathematically to the dimerization case treated above in section
3.2 with the result that

cA(t) = cB(t) =
c0

1 + c0kt , (3.43)

where c0 = cA,0 = cB,0.

This approach does lead to a messy expression, but is still of some utility beyond
a numerical solution because it gives the insight that the logarithm of the ratio of the
concentrations of A and B decays linearly with time.

3.4.1 Fractional conversion

The extent of reaction Φ is a useful quantity, but suffers from the fact that is is ex-
tensive, meaning that it is proportional to the total number of molecules present in
your reaction volume. We could instead define fractional conversion due to reac-
tion i, ξ i, to be the ratio of the extent of reaction to the maximum possible extent of
reaction,

ξ i(t) =
Φ i(t)
Φ i,max

, (3.44)
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where

Φ i,max = −
N0

l
ν il

, (3.45)

where the subscript l here denotes the limiting reagent for reaction i. Then,

ξ i(t) =
Φ i(t)
Φ i,max

= −ν il
Nj(t)− N0

j

ν ij N0
l

. (3.46)

In the case where the reaction is carried out at constant volumeV, we can divide both
the numerator and denominator by V to get

ξ i(t) = −ν il
cj(t)− c0

j

ν ij c0
l

. (3.47)

This quantity is proportional to the extent of reaction, but conveniently is dimen-
sionless, ranges from zero to one, and has the meaning of the fraction of the total
possible progress of a chemical reaction. We could have used fractional conversion
in the above analysis, and will employ it in future applications we will encounter.

3.5 The quasi-steady state approximation

We have seen the quasi-steady state approximation (QSSA) put to use in section 2.8.
This approximation is one of the most useful, accurate, and widely-used (and maybe
also abused) approximations to tame systems of ordinary differential equations aris-
ing from mass action kinetics to analytical tractability. We will put it to use again
when we study enzyme kinetics.

To understand the idea behind theQSSA,we first define a reactive intermediate
as a chemical species that is not one of the stable products or reactants of a reaction,
but rather is present in small concentrations with short lifetimes. The QSSA involves
setting the time derivative of reactive intermediates to zero. Because reactive intermedi-
ates cannot accumulate in large amounts, their time derivatives cannot grow as large
as more stable species.

The equation that results from setting the time derivative of a reactive intermedi-
ate to zero is an algebraic equation. Usually, this gives an expression for the concen-
tration of a reactive intermediate in terms of a more stable reactant, thereby enabling
an expression of the time derivative of product concentrations only in terms of the
concentrations of more stable reactants.

With this description of the QSSA inmind, re-read section 2.8 to see an example
of how it is applied.

In addition to reactive intermediates, the QSSA is also applicable to chemical
species that are in very large excess.
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4 Numerical solution to kinetics equations

In this lesson we discuss numerical methods for solving chemical kinetics equations.
This is best done in a Jupyter notebook, which may be accessed here.
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5 Enzyme kinetics

We have seen how to translate from a set of chemical reactions to a system of dif-
ferential equations describing the dynamics of the concentrations of the chemical
species. We have also seen how solve these ODEs analytically for a subset of those
that we can, and we have also learned how to solve these ODEs numerically. These
techniques are general; given a set of chemical reactions, we can write a system of
ODEs using the principle ofmass action, and can then solve them (stiffness and other
numerical issues aside).

In this lesson, we will discuss enzymes (defined below), and we can and will
apply those techniques to systems of ODEs arising from enzyme kinetics. We will
also show that making appropriate approximations to derive analytical expressions
for enzyme dynamics will be useful for conceptual understanding. This cannot be
overstated: While numerical solutions of ODEs (or other equations)are very use-
ful, significant insight can be gained by making (sometimes approximate) analytical
progress.

5.1 Catalysts and enzymes

A catalyst is a chemical substance that increases the rate of a chemical reactionwith-
out itself being consumed in the process. In industrial applications, catalysts have
many immeasurable impacts. Perhaps the most famous is the Haber-Bosch process,
in which a metal (usually iron) catalyst allows for rapid, inexpensive production of
ammonia, which is widely used in production of fertilizer. Haber-Bosch chemistry
is responsible for about 2% of the world’s energy usage and 5% of natural gas produc-
tion is used in this process. In many ways, it is this catalyzed chemistry that has led
to the population explosion over the last 100 years.

While humans have been successful in engineering (mostly metal-based) cata-
lysts, the living world has evolved an amazing variety of effective catalysts. Most
of the catalysts active in living systems are protein-based. Such catalysts are called
enzymes. RNAs, and RNA-protein complexes can also serve as catalysts, and other
biomolecules may as well. Enzymes work on other molecules, termed substrates.
These are the chemical species involved in the reactions that the enzymes catalyze.

Enzyme catalysts can have an extraordinary effect on reaction rates.6 As a typ-
ical example, consider peptide hydrolysis, the degradation of peptide bonds the co-
valently connect amino acids in peptide chains. At 25◦C this reaction is quite slow,
with a half time (the time it takes for half of a set of peptide bonds to be hydrolyzed)
of about 450 years. By contrast, this reaction proceeds much faster with the help

6For a nice review, check out Wolfenden and Snider, Acc. Chem. Red., 34, 938–945.
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of a carboxypeptidase enzyme, with a half time of about 2 milliseconds. That is a
difference of about 13 orders of magnitude! As an extreme example, consider the
decarboxylation of an amino acid,

R

O

OH
R H + O C O.

This reaction has a half time of about a billion years at 25◦C inwater. The arginine
decarboxylase enzyme brings this half time down to about amillisecond, about a 1019

fold speed boost!

The mechanisms by which there speed boosts are obtained (mainly by lowering
activation energies) are fascinating subjects, but outside of the scope of this course’s
very short treatment of chemical reaction kinetics. For now, we will investigate
chemical reaction schemes by which enzymes work and derive expressions for the
dynamics of substrate depletion and product formation for enzyme catalyzed reac-
tions.

5.2 Michaelis-Menten kinetics

In a seminal paper in 1913, Leonor Michaelis and Maud Menten studied the action
of invertase, an enzyme that converts sucrose to fructose and glucose. In their pa-
per, they proposed a simple mechanism for enzyme catalyzed reactions in which the
enzyme reversibly binds to the substrate The enzyme-substrate complex can then
irreversibly be converted to the product, freeing the enzyme. The scheme may be
written as

E + S
k1−−⇀↽−−

k−1
ES k2−−→ E + P. (5.1)

From this reaction scheme, we may write down the corresponding system of
ODEs according to mass action.

dcS

dt = −k1 cE cS + k−1 cES, (5.2)

dcES

dt = k1 cE cS − (k−1 + k2)cES, (5.3)

dcP

dt = k2 cES, (5.4)

dcE

dt = −k1 cE cS + (k−1 + k2)cES. (5.5)
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We can leave these equations as they are and solve them numerically for some ini-
tial condition if we wish. Alternatively, we can make some simplifications and write
perhaps clearer expressions.

Michaelis and Menten did not make the QSSA; this was done later in 1925 by
Briggs and Haldane. Rather, they assumed that the enzyme-substrate binding re-
action achieved a rapid equilibrium. We will instead proceed with a QSSA, setting
dcES/dt = 0.

dcES

dt = k1 cE cS − (k−1 + k2)cES = 0. (5.6)

By conservation of enzyme, we have that

c0
E = cE + cES, (5.7)

where c0
E is the total concentration of free and bound enzyme. Thus, cE = c0

E− cES.
Substituting this relation into the QSSA expression above and solving for cES yields

cES =
k1 c0

E cS

k1 cS + k−1 + k2
= c0

E
cS/KM

1 + cS/KM
, (5.8)

where

KM ≡
k−1 + k2

k1
(5.9)

is called the Michaelis constant.7 Substituting this into the expression for dcP/dt
gives

dcP

dt = k2c0
E

cS/KM

1 + cS/KM
. (5.10)

This equation is known as the Michaelis-Menten equation. It is often written in
terms of reaction velocity, v0, which is simply dcP/dt, as

dcP

dt ≡ v0 = vmax
cS/KM

1 + cS/KM
, (5.11)

where vmax = k2 c0
E.

5.2.1 Properties of the Michaelis-Menten equation

We now investigate the properties of the Michelis-Menten equation. A sketch of
reaction rate (referred to as “velocity” in the context of enzyme catalyzed reactions)
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Figure 3: The velocity v0 = dcP/dt versus substrate concentration in units of
the Michaelis constant for Michaelis-Menten kinetics.

versus substrate concentration is shown in Fig. 3. In looking at the plot, recall that
vmax = k2 c0

E, proportional to the total enzyme concentration.

In studying the plot and theMichaelis-Menten equation, a few key properties are
apparent.

1. Themaximumvelocity is proportional to the total enzyme concentration. The
reaction goes faster as more enzyme is available.

2. The Michaelis constant KM sets the scale of the substrate concentration nec-
essary to achieve a high reaction velocity. If the substrate concentration is far
greater than theMichaelis constant, the velocity is approximately vmax. In this
high substrate concentration regime, the enzyme is said to be operating at sat-
uration. The kinetics are no longer dependent on substrate concentration and
are instead limited by how much enzyme is available to serve as a catalyst.

3. In general, the catalytic rate constant, kcat is defined such that vmax = kcat c0
E.

The catalytic rate constant has dimension of inverse time and is also referred
to as the turnover number, as it is proportional to the number of reactions per
unit time a single enzymemolecule (ormole of enzyme,micromole of enzyme,
etc., depending on the chosen units of c0

E) can perform. For the Michaelis-
Menten mechanism, kcat = k2.

4. For substrate concentrations much smaller than the Michaelis constant, the
velocity grows linearlywith substrate concentrationwith slope k2 c0

E/KM. Thus,
at low substrate concentration, k2/KM (or more generally kcat/KM) serves as

7There are many ways to define a Michaelis constant, depending on reaction scheme and how a
QSSA or other approximation is applied. This is one of them.
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an effective rate constant, since

dcP

dt ≡ v0 ≈
kcat

KM
c0

E cS (5.12)

in the low substrate concentration limit. The quantity kcat/KM is referred to
as the catalytic efficiency of the enzyme. The bigger the catalytic efficiency,
the faster the enzyme can perform the reaction.

5. You may notice that the substrate concentration-dependence is in the ubiqui-
tous formof theLangmuir isotherm andHill function, (cS/KM)/(1+cS/KM).

5.2.2 Solving the Michaelis-Menten equation

The Michaelis-Menten equation is a convenient expression for the rate of produc-
tion of product, but we can make further progress, and eventually solve the resulting
ODE, if we instead look at the rate of consumption of substrate. We can use the
conservation law of total substrate product,

d
dt (cS + cES + cP) = 0. (5.13)

Since we used the QSSA such that dcES/dt = 0, we have that

dcS

dt = −dcP

dt = −k2c0
E

cS/KM

1 + cS/KM
. (5.14)

This differential equation is again separable, as we have seen withmany of the ODEs
arising from mass action kinetics we have encountered.

dcS
1 + cS/KM

cS/KM
= −dt k2c0

E. (5.15)

The right hand side may be easily integrated to give

−
∫ t

0
dt′ k2c0

E = −k2 c0
E t. (5.16)

We can integrate the left hand side as follows.∫ cS

c0
S

dc′S
1 + c′S/KM

c′S/KM
=

∫ cS

c0
S

dc′S
(

1 +
KM

c′S

)
(5.17)

= cS − c0
S + KM

∫ cS

c0
S

dc′S
c′S
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= cS − c0
S + KM ln

cS

c0
S

Thus, we have

cS + KM ln
cS

c0
S
= c0

S − k2 c0
E t. (5.18)

This is easier to work with if we divide by the Michaelis constant (putting concen-
trations in units of the Michaelis constant).

cS

KM
+ ln

cS

c0
S
=

c0
S

KM
− k2

c0
E

KM
t. (5.19)

There is no closed-form solution for cS as a function of time, but the above relation
is useful. First, we see that the initial condition is satisfied. When t = 0, we have
the cS(t = 0) = c0

S. For short times, we still have cS ≈ c0
S, such that ln(cS/c0

S) ≈ 0,
giving

cS ≈ c0
S − k2 c0

E t. (5.20)

This iswhatwewould expect from theMichaelis-Mentendifferential equation (5.10);
for short times, when substrate is abundant, substrate is depleted (and therefore
product formed) at a rate proportional to vmax = k2 c0

E. For long times, as t → ∞,
the right hand side tends toward−∞. The only way the left hand side can also tend
toward −∞ is if cs tends toward zero. This tells us that eventually all of the sub-
strate will be consumed, as we would expect due to the irreversible final reaction in
the scheme.

We can continue and write a solution in terms of the Lambert W function. This
is actually of less use than integrating the Michaelis-Menten system of ODEs nu-
merically (since that is done without invoking a QSSA or other approximation), but
I show it here for completeness. Exponentiating both sides gives

cS

c0
S

ecS/KM = e(c0
S−k2c0

Et)/KM . (5.21)

Multiplying both sides by c0
S/KM gives

cS

KM
ecS/KM =

c0
S

KM
e(c0

S−k2c0
Et)/KM . (5.22)

The primary branch of the Lambert W function, W0(x), is the solution y to y ey = x,
where x is positive and x and y are both real. Thus,

cS

KM
= W0

(
c0

S

KM
e(c0

S−k2c0
Et)/KM

)
. (5.23)

31



If we define c0
S to be the total amount of substrate, bound to enzyme or unbound,

and assume we initially have no product (cP(0) = 0), then, by conservation of total
substrate and product, we have

cP = c0
S − cS − cES. (5.24)

We can use the above expression for cS(t) and our expression for cES obtained from
the QSSA in equation (5.8), to get

cP(t) = c0
S − cS − c0

E
cS/KM

1 + cS/KM
, (5.25)

where cS is given by equation (5.23).

5.3 Inhibition

In industrial processes, catalysts can be poisoned, a process that usually involves
adsorption of impurities in the feed. As a result, the catalysts have fewer available
adsorption sites for reactant species, therefore slowing the reaction. Similarly, en-
zymes maybe “poisoned” when another molecule binds them rendering them inca-
pably of binding substrate. In the enzyme setting, this is not called poisoning, but is
called inhibition.

Here, we will consider the simple case of a single inhibitor that may bind an en-
zyme that is catalyzing a reaction that proceeds by the Michaelis-Menten mecha-
nism. The set of chemical reactions now includes enzyme binding to inhibitor in
addition to the Michaelis-Menten reactions.

E + S
k1−−⇀↽−−

k−1
ES k2−−→ E + P, (5.26)

E + I
k3−−⇀↽−−

k−3
EI. (5.27)

To investigate the effect of the presence of an initiator on v0, the rate at which
product is produced, we use the usual procedure of writing differential equations
according to mass action and apply the QSSA. Equations (5.2) through (5.4) still
hold, and are reproduced below for clarity, but are supplemented by ODEs taking
into account the inhibitor.

dcS

dt = −k1 cE cS + k−1 cES, (5.28)

dcES

dt = k1 cE cS − (k−1 + k2)cES, (5.29)
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dcP

dt = k2 cES, (5.30)

dcE

dt = −(k1 cS + k3 cI)cE + (k−1 + k2)cES + k−3cEI, (5.31)

dcI

dt = −k3 cE cI + k−3cEI, (5.32)

dcEI

dt = k3 cE cI − k−3cEI. (5.33)

Because v0 = k2cES, we seek an expression for cES in terms of c0
E, cS, and the total

amount of inhibitor, c0
I . We again can apply the QSSA to the dynamics of the ES

intermediate such that dcES/dt ≈ 0, giving

cES ≈
k1

k−1 + k2
cE cS =

cE cS

KM
, (5.34)

exactly as in the uninhibited case. Without the inhibitor, we could use the conserva-
tion law for enzyme to write an expression for cE in terms of the total enzyme con-
centration c0

E and the substrate concentration cS, allowing use to write an expression
for cES in terms of these two variables. This is exactly what we did in deriving the
Michaelis-Menten equation. Now, however, the conservation law for enzyme is

c0
E = cE + cES + cEI, (5.35)

such that

cE = c0
E − cES − cEI. (5.36)

To make further analytical progress, we need an expression for cEI. To do so,
we need to make another approximation. We can assume that the binding and un-
binding of inhibitor to enzyme reaches a rapid equilibrium, such that the net rate
of the enzyme-inhibitor reaction is zero. That is, the forward and reverse rate of the
enzyme-inhibitor binding reaction are equal, such that

k3 cE cI ≈ k−3cEI. (5.37)

In general, a rapid equilibrium approximation assumes that the dynamics associated
with a single reversible reaction are faster than the dynamics of interest, such that
the forward and reverse rates of the reaction to which the approximation is applied
are equal.

At this point, we can take two approaches. We can write cEI in terms of the
concentration of the inhibitor, cI. This is what is commonly done, and is done in
Kuriyan, Konforti, and Wemmer. Another approach is to write everything in terms
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of c0
I , which might be easier to control experimentally. The resulting expressions are

messier in this case. In the first approach, we are treating the inhibitor similarly as
the substrate; wewrite expressions in terms of cI and cS instead of c0

I and c0
S. To keep

things simple, we will use the first approach here.

From the rapid equilibrium approximation,

cEI ≈
k3

k−3
cE cI, (5.38)

which gives

cE ≈ c0
E − cES −

k3

k−3
cE cI. (5.39)

We can solve this for the enzyme concentration cE,

cE =
c0

E − cES

1 + k3
k−3

cI
(5.40)

Substituting this expression into our expression for cES (equation 5.34), gives

cES ≈
c0

E − cES

1 + k3
k−3

cI

cS

KM
. (5.41)

Rearranging to solve for cES, this is

cES ≈ c0
E

cS

KM

(
1+ k3

k−3
cI

)
1 + cS

KM

(
1+ k3

k−3
cI

) . (5.42)

Apparently the inhibitor has introduced an effective Michaelis constant,

K∗
M = KM

(
1 +

k3

k−3
cI

)
. (5.43)

which that we recover our usual Michaelis-Menten expression,

dcP

dt ≡ v0 = k2 cES ≈ k2 c0
E

cS/K∗
M

1 + cS/K∗
M
. (5.44)

If we have strong inhibition (k3cI/k−3 ≫ 1), the effectiveMichaelis constant ismuch
larger, thereby slowing the rate of the reaction.
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6 Measurement of chemical rates

We have learned how to go from a putative reaction mechanism to differential equa-
tions describing the dynamics of concentrations of chemical species using mass ac-
tion kinetics. Central to this analysis is the determination of the constants of propor-
tionality between the product of concentrations of reactants and the reaction rate.
We have come to know these as rate constants.

We are going to defer some of the theory behind rate constants, in particular
concepts of temperature-dependence and diffusion-limited rates, until we have built
the thermodynamic machinery we need to understand these concepts. For now, in
this lesson, we will focus on methods for monitoring reactions such that kinetic rate
constants may be empirically determined.

6.1 Monitoring reactions with light

Optical methods are among the most widely used for monitoring biochemical reac-
tions. I will not go into detail about these methods here, but instead encourage you
to read sections 2.6 and 2.7 of Wittrup, Tidor, Hackel, and Sarkar. Below is a brief
summary of optical methods.

6.1.1 Scattering

When light impinges upon biomolecules, it can induce oscillations in the molecules.
The oscillations result in a re-radiation, which is measured as scattered intensity. It
is commonly used in flow cytometry to get a rough estimate of the size and shape of
objects.

6.1.2 Absorbance

More than just scattering can happen when biomolecules are exposed to light. If the
light has a wavelength (and therefore energy) corresponding to electronic transitions
allowable in the molecule, the impinging photons may trigger the electronic transi-
tions, and the photon is absorbed and does not exit the sample. By monitoring how
much light gets through a sample, absorbance can bemeasured. For dilute solutions,
the absorbance, given by A = ln(I0/I), where I0 is the intensity of incident light and
I is the intensity of transmitted light, is directly proportional to absorbing species
concentration, thereby allowing concentration determination.
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6.1.3 Fluorescence

This is perhaps the most widely used method for monitoring quantity and location
of biochemical species in use today. Some molecules can fluoresce. The process of
fluorescence involves four steps.

1. Excitation. Incident light of wavelength corresponding to an excitation en-
ergy kicks the molecule into a higher energy excited electronic state. This
happens on a femtosecond time scale.

2. Excited radiationless transition. While still in the excited electronic state,
the molecule relaxes to a lower vibrational state. No photon is emitted in this
transition. The lifetime of this state is on the order of nanoseconds, but can
sometimes last as long as a microsecond.

3. Emission. The molecule relaxes back down to the ground electronic state.
The difference in energy is accounted for by the release (emission) of a pho-
ton. Sometimes, a photon is not emitted and the energy is dissipated as heat
instead. Emission happens on a femtosecond time scale.

4. Ground radiationless transition. As a final relaxation, the molecule drops to
a low vibrational state within the ground electronic state. No photon is emit-
ted.

Importantly, the time scale of the processes of fluorescence are much faster than
most processes of biological interest. Unfortunately, not many molecules fluoresce,
which iswhy those that do, calledfluorophores, are often covalently bound tomolecules
of interest.

The photons emitted by fluorescence are measured by an assortment of detec-
tors, including sophisticated microscopes that also allow for spatial data about the
fluorophores.

Quenchers are molecules that, when in contact with an excited fluorophore, ac-
cept the energy from the excited state and rapidly convert it to heat, resulting in no
photon emission. This process is called quenching. The efficiency EF of quenching
falls rapidly with the distance between the fluorophore and quencher according to

EF =
1

1 + (r− r0)6 , (6.1)

where r is the distance between the fluorophore and quencher and r0 is the Förster
radius, named after Theodor Förster, who worked out the relation. As a result
of this rapid decay of quenching efficiency with distance, molecules are often con-
structed with a fluorophore-quencher pair on the same molecule. This allows for
experimental monitoring of conformations of biomolecules. Such experiments are
called FRET experiments, an acronym for fluorescence (or Förster) resonance en-
ergy transfer.
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6.2 Stopped ow experiments

There are many challenges for measuring the kinetic rate constants of fast reactions,
such as those catalyzed by enzymes. One particularly daunting challenge is to com-
pletely mix the reactants without letting too much of the reaction proceed. For very
slow reactions, one can simply pipette reactants into a cuvette and then measure
absorbance, fluorescence, or whatever readout of species concentrations are appli-
cable. But for fast reactions that proceed on time scales of milliseconds, this is very
challenging.

In addition to relaxation experiments, described in the next section, stopped
flowexperimentsprovide ameans to rapidlymix components and then quicklymon-
itor optical properties of the reaction mixture over time. A schematic of a stopped
flow apparatus is shown in Fig. 4. In this example, purified solutions of enzyme and
substrate are added together via syringes into amicrofluidic device. The device is de-
signed to induce microscale turbulence immediately after the reactant streams come
into contact, which accomplishes rapid mixing. After mixing, the reaction mixture
enters a region called the sample cell, which has optically clear walls enabling spec-
troscopic detection. Typically the detectors can function at very high frequency,
often in tens or hundreds of kHz. Once the input streams have mixed and entered
the sample cell, the stop switch is triggered to stop the flow, and the reaction is mon-
itored.

Figure 4: Set up of a stopped flow experiment for measuring enzyme kinetics.
Image created by Athel Cornish-Bowden, licensed under a CC-BY-SA 4.0 li-
cense.

Ideally, stopped flow apparatuses have very low dead time, which is the amount
of time that passes between the point when the reactant mixture first comes into
contact and when it can be observed. Modern stopped flow devices can have dead
times as low as hundreds of nanoseconds.

As an example of how a stopped flow apparatusmaywork, consider a simple irre-
versible reaction involving the binding of a ligand A to a receptor B that can undergo
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the reaction

A + B k−−→ AB. (6.2)

The ligand A has a fluorophore attached to it, and the receptor B has a quencher,
such that the progress in the reaction can be monitored by loss of fluorescence signal
over time. Assuming complete quenching when A is bound, the fluorescence is

f = f0 cA, (6.3)

where f0 is a constant of proportionality between the concentration of A and the
measured fluorescence. We will call a function that maps chemical concentrations
to a measured quantity a readout function (my term; I do not know of an “official”
term for this). We have previously worked out that if the inlet concentrations of A
and B are equal such that c0

A = c0
B = c0,

cA(t) =
c0

1 + c0 k t . (6.4)

Thus,

f(t) = f0 c0

1 + c0 k t (6.5)

Since c0 is known f0 and k can be found by performing a regression using this equation
on the decay of fluorescence in the sample chamber over time.

6.3 Relaxation experiments

Relaxation experiments are a commonly used method for assessing reaction rates
of reversible reactions. In a relaxation experiment, a reaction mixture is allowed to
come to a steady state (where all time derivatives vanish). Then, conditions are sud-
denly and subtly changed and the dynamics observed. This usually involves a jump in
temperature, pH, or pressure. Temperature or pH jumps can be made very rapidly
using pulsed lasers to raise the temperature or photolyze absorbing molecules, re-
spectively. In any case, the steady state (or equilibrium as we will soon learn about)
shifts, since rate constants are in general dependent on temperature, pH, etc.

As an example, consider the reversible binding of two species A and B,

A + B
k1−−⇀↽−−

k−1
AB · (6.6)

The dynamical equations for this reaction are

dcAB

dt = −dcA

dt = −dcB

dt = k1 cA cB − k−1 cAB. (6.7)
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Alternatively, we can write a single differential equation in terms of the extent of
reaction, ϕ = cAB − c0

AB as

dϕ
dt = k1(c0

A − ϕ )(c0
B − ϕ )− k−1(c0

AB + ϕ ). (6.8)

It is useful here to employ the fractional conversion ξ (see section 3.4.1), which in
this case is the extent of reaction divided by the total number of particles of the lim-
iting reagent. Assuming A is limiting such that c0

A ≤ c0
B,

ξ =
Φ
N0

A
= ϕ/c0

A. (6.9)

Dividing the differential equation by c0
A, and assuming c0

AB = 0, we have

dξ
dt = k1 c0

A(1− ξ )
(

c0
B

c0
A
− ξ

)
− k−1 ξ . (6.10)

We can show that for any set of reversible reactions in a closed system (one in
which no material flows in or out) with dynamics governed by mass action that a
steady state exists and is unique.8 We will denote the steady state fractional conver-
sion as ξ ss. It is not important to find it for the discussion here, but it can be solved
to be

ξ ss =
1
2

1 +
c0

B

c0
A
+

k−1

k1 c0
A
−

√(
1 +

c0
B

c0
A
+

k−1

k1 c0
A

)2

− 4
c0

B

c0
A

 . (6.11)

Now, let’s say we quickly make a perturbation, say by a temperature jump, such that
the steady state shifts. Let us assume that immediately after the perturbation the
new extent of reaction is ξ ss + δξ , where δξ is a small perturbation. After the
temperature jump, the reaction mixture will relax back to steady state according to
the above differential equation, or

d(ξ ss + δξ )
dt = k1 c0

A(1− ξ ss − δξ )
(

c0
B

c0
A
− ξ ss − δξ

)
− k−1(ξ ss + δξ ).

(6.12)

We can group terms as[
dξ ss

dt

]
+

dδξ
dt =

[
k1 c0

A(1− ξ ss)

(
c0

B

c0
A
− ξ ss

)
− k−1 ξ ss

]

− k1 c0
A

((
1 +

c0
B

c0
A
− 2ξ ss

)
δξ − (δξ )2

)
− k−1 δξ

(6.13)

8We will prove this when we talk about equilibrium in the thermodynamics section of the course.
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The bracketed terms are zero by the definition of the steady state. Further, if the
perturbation is small, the (δξ )2 is negligible compared to those linear in δξ . Thus,
we have

dδξ
dt = −

(
k1 c0

A

(
1 +

c0
B

c0
A
− 2ξ ss

)
+ k−1

)
δξ . (6.14)

This is a first order linear differential equation with solution

δξ (t) = δξ 0 e−t/τ , (6.15)

with the relaxation time τ given by

τ =
1

k1 c0
A

(
1 +

c0
B

c0
A
− 2ξ ss

)
+ k−1

. (6.16)

It is traditional to write this relaxation time not in terms of the steady state fractional
conversion, but in terms of the steady state concentrations, css

A = c0
A(1 − ξ ss) and

css
B = c0

A(1− ξ ss).

τ =
1

k1 (css
A + css

B ) + k−1
. (6.17)

To determine the rate constants k1 and k−1, one can perform experiments for various
concentrations of reactants, thereby giving different steady state concentrations. For
each relaxation experiment, the parameter τ is determined. Then, one can use the
above expression in a regression to find the values of k−1 and k1.
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7 Bioreactors

Most of the important biochemistry done on the planet is done inside little reactors
called cells. However, bioengineers, build reactors for industrial processes to har-
ness the extraordinary catalytic power of enzymes. Sometimes those reactors are
full of little microbial reactors! Finally, as we saw in the last lesson, reactors like stop
flow apparatuses can be used to study reaction kinetics using purified proteins and
substrates. In this lesson, we will investigate various types of reactors and how we
can model the dynamics of chemical reactions happening in them.

7.1 Material balances

At the heart of our study of reactors is a material balance, which is an equation
that keeps track of all of the molecules of a given kind. The equation is simple and
intuitive; it is really just accounting.

accumulation = input− output+ net generation by chemical reaction. (7.1)

We have learned how you use mass action to write rates of generation by chemical
reaction. The new wrinkle is specifying the input and outputs for reactors that allow
them. To start, though, we will consider a reactor with no input or output.

7.1.1 Batch reactors

Perhaps the most common vessel is a batch reactor. In a batch reactor, reactants
are added, the reaction mixture is mixed, and then the reaction proceeds. When
the reaction is complete, the reactor is emptied. So, input and output are both zero.
Defining ri to be the rate of chemical reaction i in units of concentration per time,
we can write the material balance as

dNj

dt
accumulation

= 0

input

− 0

output

+
∑

i

ν ij ri V

net gen rxn

, (7.2)

where V is the volume of the reaction mixture in the reactor and Nj is the number of
molecules of species j. Note ri varies in time. Note also that in general the volume
can vary in time, since the density can change as reactions go forward. Exothermic-
ity, for example, can lead to temperature changes that change the density. For many
of the reactions we consider in class, we will assume that the reactor is isothermal
and that the reaction mixture has constant density. Note that we do also assume the
reaction volume iswell-mixed, meaning that there are no areas of the reactor that are
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enriched in any particular species. There is no explicit spatial dependence in thema-
terial balance for the batch reactor, nor has there been thus far in class. Toward the
end of the class, when we discuss diffusion, we will consider spatial variation, but for
now, we will always make a well-mixed assumption. As a result, we will draw a batch
reactor like in Fig. 5a, containing a propeller indicating that the fluid is well-mixed.

F(t)
a) b)

Figure 5: a) A batch reactor. b) A semibatch reactor. The volumetric inlet flow
is F(t), and there is no outlet flow.

When the volume is constant, we can conveniently write the material balance as

dcj

dt =
∑

i

ν ijri, (7.3)

which is the same expression we have been using thus far for all of our governing
equations. So, we have really been picturing all of our chemical processes thus far
happening in a batch reactor, in our minds being a cell, a cuvette, a test tube, the
sample chamber of a stopped flow device, etc.

7.1.2 Semibatch reactors

A semibatch reactor, shown in Fig. 5b, is like a batch reactor in that there is no
effluent, but does have an inlet flow, called a feed. The volumetric flow rate of the
inlet if F(t) and has units of volume per time. We assume the feed has concentration
c0

j of species j. Then, the material balance is

dNj

dt
accumulation

= F c0
j

input

− 0

output

+
∑

i

ν ij ri V

net gen rxn

, (7.4)

where

V(t) = V0 +

∫ t

0
dt′ F(t′), (7.5)
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with V0 being the volume of reaction mixture at time t = 0.

Semibatch reactors are often set up to contain some reagents initially, and then
the feed contains the rest of the reagents necessary to start and continue the reac-
tion. This is useful, for example, to slowly add in metabolites to maintain growth of
microbes.

As an example of the dynamicswewould observe in a semibatch reactor, consider
the irreversible reaction

A + B k−−→ AB. (7.6)

Initially, the semibatch reactor has no B in it, but has concentration c0
A. The feed has

no A in it, but has concentration c0
B. We will assume a constant feed from time t = 0

until time tend, at which time the contents of the reactor are emptied and the product
AB is separated. So, the feed is

F(t) =
{

F0 0 ≤ t ≤ tend
0 otherwise. (7.7)

We can then write the volume as

V(t) = V0 +

∫ t

0
dt′ F(t′) = V0 + F0 t, (7.8)

where it is understood that 0 ≤ t ≤ tend. The material balance for species A is then

dNA

dt = −k cA cB V = −k NA NB

V2 V = −k NA NB

V0 + F0 t , (7.9)

and that for species B is

dNB

dt = F0 c0
B − k cA cB V = F0 c0

B − k NA NB

V0 + F0 t . (7.10)

This system of nonlinear equations does not permit an analytical solution, so
we can solve it numerically. We are well-served, as usual, to nondimensionalize.
Although NA and NB are already dimensionless, but it is useful to redefine them in
order to eliminate parameters. We will define constants nA, nB, and τ such that

NA = nA ÑA, (7.11)

NB = nB ÑB, (7.12)

t = τ t̃. (7.13)

We seek convenient expressions for these constants in our nondimensionalization
procedure. Inserting the above expressions into the dynamical equations yields

nA

τ
dÑA

d̃t
= −k nA nB

V0

ÑA ÑB

1 + F0
V0

τ t̃
, (7.14)
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nB

τ
dÑB

d̃t
= F0 c0

B −
k nA nB

V0

ÑA ÑB

1 + F0
V0

τ t̃
, (7.15)

where we have factored a V0 out of the denominators of the chemical reaction term.
Immediately upon reviewing these equations, we see that

τ =
V0

F0
(7.16)

is a convenient choice. This is a semibatch analog to the space time that wewill learn
about momentarily when we talk about continuously stirred tank reactors. Using the
space time for τ and rearranging yields

dÑA

d̃t
= −k nB

F0

ÑA ÑB

1 + t̃
, (7.17)

dÑB

d̃t
=

c0
B V0

nB
− k nA

F0

ÑA ÑB

1 + t̃
. (7.18)

We see that if we choose nA = nB = c0
B V0, we get

dÑA

d̃t
= −κ ÑA ÑB

1 + t̃
, (7.19)

dÑB

d̃t
= 1− κ ÑA ÑB

1 + t̃
, (7.20)

where we have a single dimensionless parameter,

κ =
V0

F0
k c0

B. (7.21)

This is a ratio of time scales, that of the space time to the time scale of the reaction.

The numerical solution of this system of equations is shown in Fig. 6. As B is fed
into the reactor, A gets converted into AB, and the AB concentration grows. Even-
tually, the A is exhausted and extra feed just dilutes the reaction mixture.

7.2 Continuous ow stirred-tank reactors

Continuous flow stirred-tank reactors, called CSTRs for short, shown in Fig. 7,
have both a feed and an outflow. These reactors see widespread use in industrial
biological processes, but are also used in research instruments for studying reaction
rates. They offer a convenient look into the dynamics of chemical reactions when
operated at steady state, we will be evident when we consider the material balance
for a CSTR.
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Figure 6: Numerical solution for the dynamics of the reaction A + B→AB in a
semibatch reactor for various values of κ . The initial condition is ÑA(0) = 10.
The dimensionless concentration of species j is Ñj/(1 + t), where 1 + t is the
dimensionless volume of the reaction mixture. This figure was generated with
Listing 1.

The material balance now includes nonzero inputs, outputs, and net generation
by chemical reaction. The material balance for species j is

dNj

dt
accumulation

= Fin c0
j

input

− Fout cj

output

+
∑

i

ν ij ri V

net gen rxn

. (7.22)

Note that V here is the volume of the reaction mixture, not the total volume of the
reactor.

CSTRs are often operated at steady state, such that the accumulation term is
zero. Again assuming constant density the volumetric flow rate into the CSTRmust
equal that out of the CSTR at steady state, such that Fin = Fout. Thus, at steady
state,

0 = F c0
j − F cj +

∑
i

ν ij ri V. (7.23)
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Fin(t)

Fout(t)

Figure 7: A continuous flow stirred-tank reactor (CSTR).

Assuming for a moment a single reaction, we can drop the sum over reactions and
drop the i index, this is

0 = F c0
j − F cj + ν j r V. (7.24)

Rearranging,

r =
cj − c0

j

ν j τ , (7.25)

where

τ =
V
F (7.26)

is the space time. The inverse of the space time is called the space velocity. (Note
that the space velocity is sometimes referred to as the dilution rate, as is the case in
the Wittrup, Tidor, Hackel, and Sarkar book.) Evidently, with a CSTR, the rate of
a reaction can be determined simply by operating at steady state and measuring the
concentrations of the inlet and outlet along with the volumetric flow rate!

The space time is an important operational parameter of a CSTR. The volume
is usually chosen based on how big a physical reactor is, and then the feed is chosen
to achieve a desired space time. This is an important consideration because the frac-
tional conversion for a chemical reaction, while independent of the volume of the
reaction mixture for a batch reactor, is dependent on volume for a CSTR. The frac-
tional conversion is independent of volume however, if the space time is the same.
To make this explicit, consider a reaction proceeding in a constant-volume batch re-
actor.

dcj

dt = ν jr. (7.27)
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Assuming species j is limiting, and noting that the fractional conversion is ξ = 1−
cj/c0

j , we can write the material balance instead as

− 1
ν j c0

j

dξ
dt = r. (7.28)

There is clearly no volume dependence here, and that time necessary to achieve frac-
tional conversion ξ is

t = c0
j

∫ ξ

0

dξ ′

r . (7.29)

Conversely, for a CSTR, we have

r =
cj − c0

j

ν j τ = −
c0

j

ν j τ ξ . (7.30)

Here, we see that τ is a function of ξ ,

τ = −
c0

j

ν j r ξ . (7.31)

Finally, note that the space time is the average residence time of a single species
in a CSTR. It is important to note that it is the average time and not how long any
given molecule or microbe stays in a CSTR.

7.3 Chemostats

A chemostat is a bioreactor operating at steady state containing microbes that grow,
divide, and usually produce a product of interest. Themicrobes and chemical species
in the effluent are later separated and purified. So, a chemostat may be thought of as
a CSTR where the “reaction” involved is microbial metabolism and growth.

We start by writing amaterial balance formicrobes. Let x be the concentration of
microbial cells. For microbes in ideal growth conditions, the growth is exponential
with

dx
dt = kx, (7.32)

where k is the growth rate. Then, operating at steady state, the chemostat material
balance for microbes is

0 = Fx0 − Fx + kxV. (7.33)
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Typically the feed has no microbes in it; reactors are usually seeded and then filled
in a start-up process before operating at steady state. So, taking x0 = 0, we find that
the microbe concentration cancels from the material balance, giving

k =
1
τ =

F
V , (7.34)

demonstrating that the growth rate is equal to the space velocity. This is quite re-
markable. By tuning the space time, which is entirely determined by the feed rate
and the volume of the media/microbe mixture, the growth rate may be set.

Of course, this only works for nonzero k. We cannot have feed completely devoid
of growth substrate for themicrobes. In general, the growth ratewill be dependent on
the composition of the media, temperature, and other factors, so in order to achieve
growth, the feed must be of the appropriate temperature and also have substrate in
it to sustain growth. Let us then consider a steady state material balance on growth
substrate, noting that the rate of substrate consumption is proportional to the rate of
microbial growth. The constant of proportionality given by the yield coefficient. In
general a yield coefficient is a ratio,

Y =
rate of production of a product
rate of consumption of a feed

. (7.35)

The product could be anything of interest, such as microbes, waste, relevant chemi-
cal product, or even heat. Similarly the feed can be anything of interest. In this case,
the product is microbes and the feed is substrate, such that

Y =
rate of microbial growth

rate of consumption of substrate
. (7.36)

Denoting the substrate concentration as c and using the yield coefficient, thematerial
balance for substrate is

0 = F c0 − F c− 1
Y k x V. (7.37)

Noting that k = 1/τ = F/V, we have

F(c0 − c) = Fx
Y , (7.38)

which is solved to give the steady state microbial concentration,

x = Y(c0 − c). (7.39)

While the yield is generally known for substrates and microbes under various con-
ditions (≈ 0.5 for E. coli or S. cerevisiae fed with glucose), we need think about how
to set c0, F, and V to achieve a desired rate of growth, which usually is proprotional
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to a production rate of product of interest. To do so, we need to be mindful that the
growth rate k is a function of substrate concentration; k = k(c). If a precise relation-
ship between the growth rate and substrate concentration is known for a given set of
conditions, we may use that. In lieu of that, we will use an expression proposed by
Monod, and referred to as theMonod equation,

k(c) = kmax
c/KS

1 + c/KS
. (7.40)

This calls to mind the Langmuir isotherm andMichaelis-Menten kinetics. It is phe-
nomenological and many growth rates do not follow the Monod expression, but it is
still useful for conceptualizing design of bioreactors. Using this expression for the
growth rate and recalling that the growth rate is given by the space velocity at steady
state, we have

τ =
V
F =

1
k =

1
kmax

1 + c/Ks

c/Ks
=

1
kmax

(
1 +

Ks

c

)
. (7.41)

We can solve for the substrate concentration in terms of the space time,

c =
Ks

τkmax − 1
. (7.42)

Substituting this into the material balance of substrate (7.39),

x = Y
(

c0 −
Ks

τkmax − 1

)
(7.43)

This expression is not always positive. If

c0 ≤
Ks

τkmax − 1
, (7.44)

the bacterial concentration is negative. Of course this is physically unrealizable; the
resulting steady state is zero, meaning that all microbes flow out of the CSTR. In
order to achieve a nonzero steady state microbial concentration, then, we must have
a sufficiently large space time,

τ > τ min =
1

kmax

(
1 +

Ks

c0

)
. (7.45)

This means we need to operate with a large volume and small feed, lest we put the
reactor in a washout condition in which the microbial population goes to zero.

With this knowledge, how should we set the operating conditions? If we want to
optimizemicrobial growth rate (and thereforewhatever product they are producing),
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we want to find where kx = x/τ is maximal. Using our expression (7.43) for the
bacterial concentration, we can find where x/τ is maximal by differentiating.

d x/τ
dτ =

d
dτ

Y
τ

(
c0 −

Ks

τkmax − 1

)

= − Y
τ 2

(
c0 −

Ks

τ kmax − 1

)
+

Y
τ

kmax Ks

(τ kmax − 1)2 = 0. (7.46)

Solving for τ , which involves some algebraic grunge, yields

τ opt =
1

kmax

(
1 +

Ks

c0
+

√
Ks

c0

(
1 +

Ks

c0

))
. (7.47)

Typically the concentration of substrate in the feed is chosen such that c0 ≫ Ks.
(Ks for glucose is about 3 mg/L for E. coli and about 25 mg/mL for S. cerevisiae.) It
is wise not to choose it to be too far above Ks, as solutions with high concentrations
of sugar tend to be viscous and therefore more difficult to mix and aerate, but large
enough that the microbial growth rate is near kmax. With c0 ≫ Ks, the optimal space
time we just calculated is very close to τ min. This presents a problem because small
variations in operating conditions could push the reactor into a washout condition.
In practice, then, it would be wise to choose a space time to be a bit longer than τ opt
to about potentially disastrous washout conditions.
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Part II

Thermodynamics
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8 Mathematical preliminaries

As we shift our focus to thermodynamics, we need to lay some groundwork with
some mathematical preliminaries.

8.1 Probability review

The mathematical scaffolding of statistical mechanics, which we will use to build up
a thermodynamic theory, is the theory of probability. We will not formally define
probability, but instead will propose a working definition9 that is particularly useful
ina statistical mechanical context, and then list some key features of probability.

8.1.1 Working de nition of probability

Say we have N total outcomes, NA of which are in category A. The probability of
having an outcome in category A is

P(A) = NA

N , (8.1)

which is the fraction of all of the outcomes that are in category A. As an example,
imagine that we roll a fair six sided die. Define A to be the set of outcomes where we
roll an even number. In this case, N = 6 (each of the six sides of the die) and NA = 3
(each of the sides of the die with an even number of pips), and

P(even) = 3
6
=

1
2
. (8.2)

As another example, say we roll two dice. What is the probability of having the
sum of the results be even? This is a bit more tricky, since there are six subcategories
of even outcomes (2, 4, 6, 8, 10, and 12), but only five subcategories of odd outcomes
(3, 5, 7, 9, and 11). So, careful counting is in order. In the table below, we list the (first
die, second die) numbers to achieve each sum, and tally how many ways there are to
achieve each sum.

9By working definition, I mean that it is not formal and not as fully applicable as a more formal
definition of probability, but will suffice for our purposes.
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sum of dice ways to achieve degeneracy
2 (1, 1) 1
3 (1, 2), (2, 1) 2
4 (1, 3), (2, 2), (3, 1) 3
5 (1, 4), (2, 3), (3, 2), (4, 1) 4
6 (1, 5), (2, 4), (3, 3), (4, 2), (5, 1) 5
7 (1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1) 6
8 (2, 6), (3, 5), (4, 4), (5, 3), (6, 2) 5
9 (3, 6), (4, 5), (5, 4), (6, 3) 4
10 (4, 6), (5, 5), (4, 6) 3
11 (5, 6), (6, 5) 2
12 (6, 6) 1

Note that in the table we have used the term degeneracy, a term to mean the
number of ways to achieve the outcomes in a given category. To compute the prob-
ability of rolling an even number, we sum up the degeneracies of the even sums,
NA = 1 + 3 + 5 + 5 + 3 + 1 = 18, and N = 36, giving P(even) = 18/36 = 1/2.

8.1.2 Properties of probability

Now that we have explored probability from some simple examples, we will sharpen
our language a bit so that we can explore properties of probability.

• The sample space Ω is the set of all possible outcomes.

• An event is a subset of Ω . We colloquially used the term “category” for this
concept before.

• EventsA andB are disjoint, also calledmutually exclusive ifA∩B = ∅. That
is to say that two events are disjoint if they do not overlap at all in the sample
space; they do not share any outcomes.

With these terms in hand, we can write some key properties of probability.

• The probability of any event is nonnegative; P(A) ≥ 0.
• The probability of an outcome lying in the sample space is one, P(Ω) = 1.

This means that P(A) + P(not A) = 1, a result known as the sum rule. The
follows that the probability of any event is also not greater than one, or 0 ≤
P(A) ≤ 1.

• The probability of no outcome is zero, P(∅) = 0.
• If A1, A2, . . . are disjoint, then

P
(∪

i

Ai

)
=
∑

i

P(Ai). (8.3)
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This means that probability is additive. The probability of observing an event
in the union of disjoint events is the sum of the probabilities of those events.

Now, let’s say that we are interested in event A happening given that event B
happened. So, A is conditioned on B. We denote this conditional probability as
P(A | B). Given this notion of conditional probability, we can write the sum rule as

P(A | B) + P(not A | B) = 1, (8.4)

for any B.

The product rule states that

P(A,B) = P(A | B)P(B), (8.5)

where P(A,B) is the probability of both A and B. (It could be, and often is, written
as P(A ∩ B).) The product rule is also referred to as the definition of conditional
probability.

Events A and B are said to be independent, if B has no bearing on A, such that

P(A | B) = P(A) (A and B independent). (8.6)

As a result, the product rule gives, for independent A and B,

P(A,B) = P(A)P(B) (A and B independent). (8.7)

This generalizes; if A1, A2, . . . are all independent of each other, then

P(A1,A2, . . .) =
∏

i

P(Ai) (all Ai independent). (8.8)

With these definitions and properties in hand, let’s go back to the roll of two dice.
With our sharper language, the event we are interested in is that the sum of the two
dice is even. The sample space is all possible outcomes of the roll of two dice. The
probability of a single die coming up even, aswe alreadyworked out is 1/2. To get the
probability of rolling an even sum with two dice, we can use conditional probability.

P(sum even) = P(second die even | first die even)P(first die even)

+ P(second die odd | first die odd)P(first die odd)

= P(second die even)P(first die even)

+ P(second die odd)P(first die odd), (8.9)

where we have dropped the conditioning because the result of the first die has no
bearing on the result of the second die; they are independent. Thus, we have

P(sum even) = P(second die even)P(first die even)
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+ P(second die odd)P(first die odd)

=
1
2
· 1

2
+

1
2
· 1

2
=

1
2
. (8.10)

This was a more direct way to the same result we got by brute force counting.

8.1.3 Combinatorics and counting our way to probabilities

Working out probabilities often amounts to finding ways to count outcomes, which
often involves working out the degeneracies of events, and then using some of the
properties of probability to simplify. Let’s consider a couple more examples.

Say I flip a fair coin N times. What is the probability of getting n heads? One way
to get n heads is to have the first n flips land heads and the remaining N−n land tails.
Each flip is independent, so

P(first n heads) = [P(flip heads)]n[P(flip tails)]N−n =

(
1
2

)n (1
2

)N−n

.

(8.11)

But there are manymore ways to get n heads. The degeneracy is the number of ways
we can arrange the n heads flips across the N flips. Stated equivalently, we need to
compute the number of way we can choose n out of N flips to be heads. We can use
an useful result from combinatorics, which says that the number of ways to choose n
out of N objects is(

N
n

)
=

N!

n!(N− n)! , (8.12)

pronounced “big N choose little n.” So, the probability of flipping n out of N heads
is

P(n) =
(

N
n

) (
1
2

)n (1
2

)N−n

. (8.13)

As another example, imagine we have an Eppendorf tube with a biomolecule in
it. We divide the volume of the tube into little boxes such that each box can fit either
a solvent molecule or our biomolecule. (We will neglect the obvious size difference
here.) If we have N biomolecules and Ns solvent molecules, we have Ns + N little
boxes. If we are interested in the number of ways to distribute the biomolecules in
space, we can compute the number of ways to choose N out of Ns + N boxes.(

Ns + N
N

)
=

(Ns + N)!

Ns!N!
. (8.14)
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If we are interested in the probability that all of the biomolecules are at the bottom of
the tube, assuming all configurations are equally probable (i.e., we are not operating a
centrifuge or anything like that)wehave the single configurationwhere themolecules
are at the bottom, giving,

P(all at the bottom) =
1(Ns+N
N
) , (8.15)

and incredibly small number!

8.1.4 Probability distributions

Consider again the example of the probability of getting n head in N coin flips. We
were able to write down

P(n) =
(

N
n

) (
1
2

)n (1
2

)N−n

. (8.16)

We did this because we knew that the probability that a given coin flip would land
heads was one-half. We could have a biased coin, where the probability of heads is
different from one-half. Let us call the probability of heads θ . In that case,

P(n) =
(

N
n

)
θ n (1− θ )N−n . (8.17)

As we look at the above expression, we see that it is valid for any integer n with 0 ≤
n ≤ N. This constitutes a probability mass function, or PMF, for the discrete
outcomes n. We often write it as P(n;N, θ ), since the probability is parametrized by
N and θ .

The probability mass function is a feature of the Binomial distribution, and in
fact uniquely defines it. We could otherwise define the Binomial distribution by an-
other one of its features, its cumulative distribution function, or CDF,

F(n) =
n∑

n′=0

P(n′), (8.18)

which gives the probability of flipping n or less heads in N flips.

Since the sample space for number of heads in n flips is exactly the integers n
between zero and N, we have, by the sum rule,

N∑
n=0

P(n) =
N∑

n=0

(
N
n

)
θ n (1− θ )N−n = 1, (8.19)

which indeed is the case.10

10That the Binomial probability mass function is normalized follows from the Binomial Theorem,
which says that

∑
n
(N

n
)
anbN−n = (a + b)N. For the Binomial probability mass function, we have

a = θ and b = 1− θ such that a + b = 1.
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8.1.5 Moments of distributions

We may compute expectation values, or simply expectations, from probability dis-
tributions. The expectation of a function h(x) of a probability distribution with PMF
P(x) is denoted ⟨h(x)⟩P, and is given by

⟨h(x)⟩P =
∑

x
h(x)P(x), (8.20)

where the subscript P denotes that the expectation is computed over the probability
distribution defined byP. This subscript is often droppedwhen the distribution over
which the expectation is to be calculated is unambiguous from context.

The expectation for h(x) = x is referred to as themean, and is computed as

⟨x⟩ =
∑

x
xP(x). (8.21)

Another common expectation is the variance, which is the average square distance
of values from the mean, such that h(x) = (x− ⟨x⟩)2.

⟨(x− ⟨x⟩)2⟩ =
∑

x
(x− ⟨x⟩)2P(x). (8.22)

Note that the variance may also be expressed as11

⟨(x− ⟨x⟩)2⟩ = ⟨x2⟩ − ⟨x⟩2. (8.23)

As an example, we will compute the mean and variance for the Binomial distri-
bution. First, the mean is calculated as

⟨n⟩ =
N∑

n=0

n N!

(N− n)!n! θ n(1− θ )N−n

=
N∑

n=1

N!

(N− n)!(n− 1)!
θ n(1− θ )N−n

= Nθ
N∑

n=1

(N− 1)!
(N− n)!(n− 1)!

θ n−1(1− θ )N−n. (8.24)

We make the substitutions m = n− 1 and M = N− 1 to get

⟨n⟩ = Nθ
M∑

m=0

M!

(M−m)!m!
θ m(1− θ )M−m = Nθ , (8.25)

11Can you derive this?
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where the sum evaluates to unity because the Binomial distribution is normalized.
To compute the variance, it is easier to compute

⟨n(n− 1)⟩ =
N∑

n=0

n(n− 1)
N!

(N− n)!n! θ n(1− θ )N−n

=
N∑

n=2

N!

(N− n)!(n− 2)!
θ n(1− θ )N−n

= N(N− 1)θ 2
N∑

n=2

(N− 2)!
(N− n)!(n− 2)!

θ n−2(1− θ )N−n

= N(N− 1)θ 2
M∑

m=0

M!

(M−m)!m!
θ m(1− θ )M−m

= N(N− 1)θ 2, (8.26)

where this time we have made the substitutions m = n− 2 and M = N− 2. Thus,
we have

⟨n(n− 1)⟩ = ⟨n2⟩ − ⟨n⟩ = N(N− 1)θ 2

⇒ ⟨n2⟩ = Nθ (1− θ + Nθ ). (8.27)

Therefore, the variance is

σ 2 = ⟨n2⟩ − ⟨n⟩2 = Nθ (1− θ ). (8.28)

8.1.6 Continuous distributions

In the previous examples, the variables were discrete; n took only integer values. If
we have a continuous variable, instead of a probability mass function, we define a
probability density function, f(x), such that the probability of having x between x1
and x2 is

P(x1 ≤ x ≤ x2) =

∫ x2

x1

dx f(x). (8.29)

Analogous definitions for expectations exist, with sums replaced by integrals.

⟨h(x)⟩ =
∫

dx h(x) f(x), (8.30)

where the integral is a definite integral over the entire domain of x.

We conclude our probability review here.
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8.2 Total differentials

Say we have a function of two variables, x and y, but x and y may themselves be
functions of other variables, including, say, t. Then, but the chain rule, the total
derivative of f with respect to t is

df
dt =

∂f
∂x

∂x
∂t +

∂f
∂y

∂y
∂t . (8.31)

We do not need to necessarily differentiate with respect to t, and can instead
define a total differential element, called a total differential, df, as

df = ∂f
∂x dx +

∂f
∂y dy. (8.32)

We will often use total differentials to define thermodynamic potentials.

8.3 Legendre transforms

Say we have a differentiable function y(x) that gives a value y for each value of x. We
could define the function as a set of (x, y) pairs. Now, for any point (x, y), we can
define a slope

m(x) = dy
dx (8.33)

of a line that is tangent to the curve y(x). For each point x, the tangent line has an
intercept b(x) given by

b(x) = y(x)−m(x) x. (8.34)

The value y can be obtained by the slope and intercept for any given point x. Thus,
a collection of slope and intercept pairs has the same information as a collection of
(x, y) pairs.

Now, we can define the total differential

dy =
∂y
∂x dx. (8.35)

We can also define a total differential for the intercept,

db = d(y−m(x) x) = dy−m dx− x dm, (8.36)

where we have used the chain rule. However, by equation (8.35), dy−m dx = 0, so

db = −x dm. (8.37)
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So, if we want to switch from a total differential for dy to one for db, we define

b = y− ∂y
∂x dx = y−mx. (8.38)

The result is db = −x dm. This change of variables is an example of a Legendre
transform.

This generalizes to multivariate functions. E.g., if we have

dz = mx dx + my dy, (8.39)

we can define w = z−my y to get

dw = mx dx− y dmy. (8.40)

8.4 Homogeneous rst order functions

A homogeneous function of order n is defined as a function such that

f(ax) = an(f(x)) (8.41)

for nonzero scalar a. This generalizes to multivariate functions,

f(ax1, ax2, ax3, . . .) = an f(x1, x2, x3, . . .). (8.42)

Assuming n > 0, differentiating the above relation with respect to a gives

∂f(ax1, ax2, ax3, . . .)

∂a = nan−1 f(x1, x2, x3, . . .). (8.43)

We also have, for the total differential of f(ax1, ax2, ax3, . . .),

df(ax1, ax2, ax3, . . .) =
∑

i

∂f(ax1, ax2, ax3, . . .)

∂(axi)
d(axi). (8.44)

Therefore,

∂f(ax1, ax2, ax3, . . .)

∂a =
∑

i

∂f(ax1, ax2, ax3, . . .)

∂(axi)

∂(axi)

∂a

=
∑

i

∂f(ax1, ax2, ax3, . . .)

∂(axi)
xi. (8.45)

Together, Equations 8.43 and 8.45 give

f(x1, x2, x3, . . .) =
1

nan−1

∑
i

∂f(ax1, ax2, ax3, . . .)

∂(axi)
xi. (8.46)
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This has to hold for any a. If we take a = 1, the result is Euler’s theorem for
homogeneous functions,

f(x1, x2, x3, . . .) =
1
n
∑

i

∂f(x1, x2, x3, . . .)

∂(xi)
xi. (8.47)

For a first-order homogeneous function, this is

f(x1, x2, x3, . . .) =
∑

i

∂f(x1, x2, x3, . . .)

∂xi
xi. (8.48)

We will see that in thermodynamics, we will find that the entropy and energy are
homogeneous functions of first order in their parameters, called extensive parame-
ters. We will also find that intensive parameters are homogeneous functions of zero
order of their extensive parameters. (There are the so-called equations of state.)

8.5 Method of Lagrange multipliers

We will very soon encounter the following optimization problem. We wish to find
the maximum or minimum (generically, extremum) of a function f(x), where f is
scalar-valued and x may be vector-valued, subject to the constraint c(x) = 0. That
is, we want to find the value of x such that f(x) is maximal or minimal, but we restrict
ourselves only to values of x that satisfies c(x) = 0.

It helps to consider a concrete example. Say I want to find the maximum of

f(x) = f(x, y) = a0 − (x− a1)
2 − (y− a2)

2. (8.49)

The unconstrained maximum is clearly at x = a1 and y = a2. But, let’s say we
enforce that x = y as a constraint. In this case,

c(x) = c(x, y) = x− y. (8.50)

With the constraint, the problem is more difficult. One approach is to simply substi-
tute y = x into the expression for f(x, y) and find the maximizer of f(x, x).

f(x, x) = a0 − (x− a1)
2 − (x− a2)

2. (8.51)

We now differentiate f(x, x) with respect to x and set the result equal to zero to find
the maximizer.

df
dx = −2(x− a1)− 2(x− a2) = −4x + 2(a1 + a2) = 0, (8.52)
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which is readily solved to give

x∗ = a1 + a2

2
, (8.53)

where the star superscript is used to denote an optimum.

This is all fine and good, but what if we cannot write x as a simple function of y,
as we could do in this case? This often happens when we have many variables. This
is where the method of Lagrange multipliers is useful. Recalling again that f(x, y)
is a function of x and y, we write, using the total derivative of f(x, y) with respect to
x, which must be zero at an extremum,

df
dx =

∂f
∂x

∂x
∂x +

∂f
∂y

∂y
∂x =

∂f
∂x +

∂f
∂y

∂y
∂x = 0. (8.54)

In the case where there is no constraint, ∂y/∂x = 0 and we get an extremum when
the partial derivative of f with respect to x (and also y) vanishes. But ∂y/∂x can be
nonzero when there are constraints.

We also can write the total derivative of the constraint, noting that it vanishes
because c(x, y) = 0 by definition.

dc
dx =

∂c
∂x

∂x
∂x +

∂c
∂y

∂y
∂x =

∂c
∂x +

∂c
∂y

∂y
∂x = 0. (8.55)

From our expression for the total derivative of f, equation (8.54), we have

∂y
∂x = −∂f/∂x

∂f/∂y . (8.56)

From our expression for the total derivative of f, equation (8.54), we have

∂y
∂x = −∂c/∂x

∂c/∂y . (8.57)

Taken together, these two equations give

∂f/∂x
∂f/∂y =

∂c/∂x
∂c/∂y . (8.58)

We can rearrange to give

∂f/∂x
∂c/∂x =

∂f/∂y
∂c/∂y . (8.59)

This equation relates derivatives of different functions with respect to different vari-
ables. The only way this equality may hold if both the right hand side and left hand
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side are equal to a constant. We call this constant−λ , where λ is called a Lagrange
multiplier.

∂f/∂x
∂c/∂x =

∂f/∂y
∂c/∂y = −λ . (8.60)

We can equivalently write this equation as two equations,

∂f
∂x + λ ∂c

∂x = 0, (8.61)

∂f
∂y + λ ∂c

∂y = 0. (8.62)

These equations are the new conditions for optimality, including also the require-
ment that c(x, y) = x − y = 0. They followed from setting the total derivative of f
to zero and enforcing equation (8.60), which follows from the constraints.

Wecan state these equationsmore succinctly by defining theLagrangian,L(x, y, λ),
as

L(x, y, λ) = f(x, y) + λc(x, y). (8.63)

Then, the condition for optimality is

∂L
∂x =

∂L
∂y =

∂L
∂ λ = 0. (8.64)

Let’s try this out for our present optimization problem. The Lagrangian is

L = a0 − (x− a1)
2 − (y− a2)

2 + λ(x− y). (8.65)

Then, for our optimality conditions we have

∂L
∂x = −2(x− a1) + λ = 0, (8.66)

∂L
∂y = −2(y− a2)− λ = 0, (8.67)

∂L
∂x = x− y = 0. (8.68)

These three equations are readily solved to give

x = y =
a1 + a2

2
, (8.69)

λ = a2 − a1, (8.70)

the same results as before. Check!
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8.5.1 General formulation

In general, if we want to find x to optimize a differentiable function f(x) subject to
a set of differentiable equality constraints c1(x) = 0, c2(x) = 0, . . ., then the La-
grangian is

L(x, λ ) = f(x) +
∑

i

λ i ci(x), (8.71)

and the conditions

∇xL(x∗, λ ∗) = 0, (8.72)

∇λL(x∗, λ ∗) = 0, (8.73)

are necessary for x∗ to be optimal. These conditions are referred to as the Karush-
Kuhn-Tucker conditions, or KKT conditions for short.12

For completeness, I state here sufficient conditions for minimizers and maxi-
mizers. You may skip this paragraph and continue to the next section on convex
optimization, where the sufficient conditions are a special case of the more general
conditions I present here. A sufficient condition for x∗ and λ ∗ to be constrained
minimizers of f is that L is positive definite at x∗ and λ ∗, namely

wT · (∇2
xxL) · w > 0 (8.74)

for any nonzero w. This is the multidimensional analog to the second derivative
being positive at a minimum of a one-dimensional function. Similarly, for x∗ and
λ ∗ to be constrained maximizers of f, it is sufficient that the Lagrangian be negative
definite.

8.5.2 Convex constrained optimization

When the function f(x) we are trying to optimize is convex and constraints are also
convex (or affine, which is the casewith linear constraints), the optimization problem
has some convenient structure. A function f(x) is convex if for any x and y on the
domain of f,

f(θx + (1− θ )y) ≤ θf(x) + (1− θ )f(y). (8.75)

This is a mathematical statement that the curve lies below any cord between two
points of the function.

12The KKT conditions are more generally defined also for inequality constraints as well as the
equality constraints we consider here. For considering only equality constraints, the KKT conditions
we listed here are complete.
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We can use a more convenient condition for convexity if f(x) is twice differen-
tiable. A twice differentiable function f(x) is convex if and only if its Hessian

B ≡ ∇2
xxf =


∂2f
∂x2

1

∂2f
∂x1 ∂x2

· · ·

∂2f
∂x2 ∂x1

∂2f
∂x2

2
· · ·

...
... . . .

 (8.76)

is positive definite. Recall that B is positive definite if and only if:

i) wT · B · w > 0 for all nonzero w,

ii) All eigenvalues are positive,

iii) All upper-left submatrices have positive determinants,

iv) There exists a matrix R with independent columns such that B = RT · R.

And here is a very useful result. If f(x) is convex and the constraints ci(x) are
also convex (or affine, which means that the ci(x) is a linear function of x), then the
KKT conditions are necessary and sufficient for x∗ and λ ∗ to be a global minimum.
Conversely, if f(x) is concave (meaning that itsHessian isnegative definite), as are the
constraints (or they are affine), then theKKT conditions are necessary and sufficient
for x∗ and λ ∗ to be a global maximum.

We will use these results from convex constrained optimization to derive expres-
sions for the probability distribution of states of biomolecular systems and to prove
properties relating to the existance and uniqueness of equilibria.
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9 Entropy and the Boltzmann distribution

In this lesson, we will introduce the concept of entropy and its maximization, ulti-
mately deriving the Boltzmann distribution.

9.1 Motivation: A two-state model for a protein

Say we have a protein that can be in two configurations, which we will label as “ac-
tive” and “inactive.” We will refer to each configuration as a state, often referred
to as a microstate. This protein has two states. We are interested in working out
the probability pactive that the protein will be in the active state. The probability that
it will be in the inactive state is pinactive = 1 − pactive. The machinery of statistical
mechanics allows us to do this.

Though we are motivated by this two-state model, we will develop an expression
for pi, where i is one of an arbitrarily many states, more generally for any system
with an associated set of discrete states. The states are indexed by i, and each has
an energy Ei associated with it. We will maximize informational entropy in our
treatment, following E. T. Jaynes, Phys. Rev., 106, 620–630, 1957. The abstract of
that paper very cleanly and clearly captures the notion of what we are trying to do
here.

Information theory provides a constructive criterion for setting up prob-
ability distributions on the basis of partial knowledge, and leads to a type
of statistical inference which is called the maximum-entropy estimate.
It is the least biased estimate possible on the given information; i.e., it
is maximally noncommittal with regard to missing information. If one
considers statistical mechanics as a form of statistical inference rather
than as a physical theory, it is found that the usual computational rules,
starting with the determination of the partition function, are an imme-
diate consequence of the maximum-entropy principle. In the resulting
“subjective statistical mechanics,” the usual rules are thus justified in-
dependently of any physical argument, and in particular independently
of experimental verification; whether or not the results agree with ex-
periment, they still represent the best estimates that could have been
made on the basis of the information available.

It is concluded that statisticalmechanics need not be regarded as a phys-
ical theory dependent for its validity on the truth of additional assump-
tions not contained in the laws of mechanics (such as ergodicity, metric
transitivity, equal a priori probabilities, etc.). Furthermore, it is possi-
ble tomaintain a sharp distinction between its physical and statistical as-
pects. The former consists only of the correct enumeration of the states
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of a system and their properties; the latter is a straightforward example
of statistical inference.

9.2 The Shannon entropy

The problem of specifying pi is really open-ended. As Jaynes suggested, we can use
maximum-entropy principles to derive an expression for pi. The entropy he is talk-
ing about is the Shannon entropy, named after Claude Shannon, who published its
mathematical form in 1948, also known as the informational entropy. Formally, in-
formational entropy is the reduction in ignorance derived from learning an outcome.
It might be easier to think about ignorance instead.

Say event i happens with probability pi. If i is very probable andwe observe it, we
haven’t learned much. For example, if we observe that the current pope is Catholic,
we haven’t learned much about popes. That is, we are still pretty ignorant about
popes. But if i is very improbable and we observe it, we have learned a lot. If we
observe a pig flying, we have truly learned something new about nature.

To codify this inmathematical terms, wemight think that the information gained
by observing event i should scale like 1/pi, since more rare events give higher infor-
mation.

Now, say we observe two independent events, i and j. Since they are totally in-
dependent, the information garnered from observing both should be the sum of the
information garnered from observing each. However, we know that the probability
of observing both is pipj. But

1
pi

+
1
pj
̸= 1

pipj
. (9.1)

So, our current metric of information as 1/pi does not satisfy this addability require-
ment. However,

log
1
pi

+ log
1
pj

= log
1

pipj
. (9.2)

So, we choose log(1/pi) = − log pi as a measure of information. We are free to
choose the base of the logarithm, and it is traditional to choose base 2. The units of
information are then called bits.

Now, say we have a whole sample space of events. Then the average information
we get from observing events (i.e., the level of surprise, the loss of ignorance) is

S[p] = −
∑

i

pi log pi. (9.3)
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This is called the Shannon entropy or informational entropy.

Let’s look at the Shannon entropy another way. Say we know all of the pi’s,
meaning that we know the probability distribution describing the phenomena of in-
terest. How much knowledge do we know about what events we might observe? If
the probability distribution is flat, not much. Conversely, if it is sharply peaked, we
know a lot about what event we will observe. In the latter case, observing one event
does not give us more information beyond what we already knew from the proba-
bilities. So, the entropy S[p] is a measure of ignorance. It tells us how uncertain or
unbiased we are ahead of an observation.

I pause to note thatwe shortcutted ourway into this definition of entropy by using
some logic and the desire that independent events add. A more careful derivation
was done in 1948 by Claude Shannon. He showed that the function we wrote for
the entropy is the only function up to a positive multiplicative constant that satisfies
three desiderata about a measure of ignorance.

1. Entropy is continuous in pi.

2. If all pi are equal, entropy is monotonically increasing in N, the number of
events we could observe.

3. Entropy satisfies a composition law; grouping of events does not change the
value of entropy.

The derivation is beautiful, but we will not go into it here. We will also discover in
lecture and in homework that the entropy defined this way also has other important
properties, such as extensivity and convexity.

Since the Shannon entropy is the only function that can serve as a measure of
ignorance, and is defined up to a positive multiplicative constant, we will go ahead
and include it and call it K such that

S[p] = −K
∑

i

pi ln pi. (9.4)

If we want entropy in units of bits, we choose K = 1/ ln 2.

Finally, I note that going forward, it is understood that all pi’s satisfy 0 ≤ pi ≤ 1,
as all probabilitiesmust, and thatpi ln pi → 0 aspi tends toward zero. This is verified
using L’Hôpital’s rule,

lim
pi→0

pi ln pi = lim
pi→0

pi lnb pi = lim
pi→0

ln pi

1/pi

= − lim
pi→0

1/pi

1/p2
i
= − lim

pi→0
pi = 0. (9.5)
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9.2.1 An example of Shannon entropy and its maximization

Imagine flipping a possibly biased coin. There are two outcomes, heads, with prob-
ability ph, and tails, with probability 1− ph. The entropy in units of bits is

S = −
∑

i

pi log2 pi = −ph log2 ph − (1− ph) log2(1− ph). (9.6)

So, if the coin is unbiased, then ph = 1/2 and S = 1 bit. Now, let’s say ph =
(1 + ε )/2, where ε ∈ [−1, 1]. That is, the coin is biased if ε is nonzero. Now, we
have

S = −1 + ε
2

log2
1 + ε

2
− 1− ε

2
log2

1− ε
2

= −1
2

log2
(1 + ε )(1− ε )

4
− ε

2
log2

1 + ε
1− ε

= 1− log2(1− ε 2)− ε
2

log2
1 + ε
1− ε

= 1− log2(1− ε 2)− |ε |
2

log2
1 + |ε |
1− |ε | . (9.7)

Looking at the three terms, we have a constant plus two monotonically decreasing
functions of |ε |. Further, if |ε | = 1, we get S = 0. So, the maximal entropy is when
ε , the bias of the coin, is zero. The entropy is minimal when |ε | = 1, which means
that we know the outcome of the coin toss ahead of time. Thus, themaximal entropy
probability distribution for a coin flip is the one that is unbiased.

Now, imagine that instead of flipping a fair coin (which has two sides), we roll a
fair 8-sided die. The entropy associated with the probability distribution for the die
is

S = −
∑

i

pi log2 pi = −8
(

1
8

log2
1
8

)
= 3 bits. (9.8)

So, the entropy for a fair 8-sided die is greater than that of a fair coin. This makes
sense; we are more ignorant as to the result we would expect from an 8-sided die
than from a two-sided coin.

9.2.2 Insuf cient reason and maximum entropy

Just a moment ago, we posited that the probability distribution corresponding to a
fair eight-sided die has the maximal entropy. We can prove this by maximizing the
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entropy. Note that maximizing the entropy assumed the least amount of informa-
tion about the probability distribution. To generalize, consider an N-sided die. The
entropy is

S[p] = −K
N∑

i=1

pi ln pi. (9.9)

Tomaximize the entropy, we could (but we shouldn’t!) differentiate the entropywith
respect to pi and set the derivative equal to zero.

∂S
∂pj

= −K ∂

∂pj

∑
i=1

]Npi ln pi = −K(1 + ln pj) = 0 ⇒ pj = e−1. (9.10)

I put this equation in gray because this is not what we should do! Clearly this cannot
be right, since the probability distribution is not normalized, i.e.,

∑
i pi ̸= 1.

We need to do a constrained maximization. Specifically, we need to impose the
constraint that

∑
i pi = 1, as is always the case. We can use the method of Lagrange

multipliers, introducing the Lagrange multiplier α and defining the Lagrangian as

L(pi, α ) = −K
N∑

i=1

pi ln pi + α
(

1−
N∑

i=1

pi

)
. (9.11)

As you will show in your homework, the entropy is concave in the probabilities pi,
and the constraint is affine, so the KKT conditions are necessary and sufficient for
the entropy to be maximized.

∂L
∂pj

= 0 ∀j, (9.12)

∂L
∂α = 0. (9.13)

Evaluating the first equation of the KKT conditions,

∂L
∂pj

= −K(1 + ln pj)− α = 0 ∀j. (9.14)

This gives

pj = e−1−α/K ∀j. (9.15)

We see immediately that all probabilities are the same. The second KKT condition
gives the normalization condition.

∂L
∂α = 1−

N∑
i=1

pi = 0 ⇒
N∑

i=1

pi = 1. (9.16)
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Thus, we have
N∑

i=1

e−1−α/K = Ne−1−α/K = 1, (9.17)

which gives

pj = e−1−α/K =
1
N . (9.18)

Indeed, each side of anN-sided die has equal probability when entropy ismaximized.
This concept that maximal ignorance involves assignment of equal probability to all
outcomes was put forward by Laplace as the principle of insufficient reason long
before concepts of entropy were understood.

9.3 The Boltzmann distribution

Thinking back to our originalmotivating example of a two-state protein, the principle
of insufficient reason suggests that we should assign equal probability to each state.
This would be the maximally ignorant way to assign the probabilities, as it is the
maximal entropy distribution, subject only to the constraint that the probabilities of
the states sum to one. But we are not completely ignorant. We know that each state
has associated with it an energy, which we shall denote as Ei. Since each state has an
energy, the probability distribution should have an expectation value for the energy,

⟨E⟩ =
∑

i

Ei pi. (9.19)

Thus, we have another constraint.

Moving again to the general case where there aremany states, we can include the
existence of an expectation value of energy as a new constraint. The Lagrangian for
the now more-constrained maximization of entropy problem is

L(pi, α , β ) = S + α
(

1−
∑

i

pi

)
+ β

(
⟨E⟩ −

∑
i

pi Ei

)

= −K
∑

i

pi ln pi + α
(

1−
∑

i

pi

)
+ β

(
⟨E⟩ −

∑
i

pi Ei

)
,

(9.20)

where we have introduced a second Lagrange multiplier, β , to enforce the expecta-
tion of the energy constraint. This constraint is again linear, so the KKT conditions
are again necessary and sufficient to maximize the entropy.

∂L
∂pj

= 0 ∀j, (9.21)
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∂L
∂α = 0, (9.22)

∂L
∂ β = 0. (9.23)

Considering the first KKT condition,

∂L
∂pj

= −K(1 + ln pj)− α − βEj = 0 ∀j. (9.24)

Solving for pj gives

pj = e−1−α/K e−βEj/K. (9.25)

We can redefine constants such that 1+ α/K→ α and β/K→ β , giving a simpler
expression

pj = e−α e−βEj . (9.26)

Now, using the normalization constraint, which follows from theKKTcondition that
∂L/∂α = 0, we have∑

i

pi = e−α
∑

i

e−βEi = 1, (9.27)

so that

eα =
∑

i

e−βEi ≡ Z, (9.28)

where we have defined the partition function Z. The second constraint coming
from the last KKT condition above,

⟨E⟩ =
∑

i

pi Ei (9.29)

is automatically satisfied by definition, so we have arrived at our maximum entropy
probability distribution.

pi =
e−βEi

Z , (9.30)

with

Z =
∑

i

e−βEi . (9.31)

Setting aside for a moment that we have not yet commented on what β is, the
above probability distribution is the Boltzmann distribution. It is the maximal en-
tropy probability distribution for a set of discrete states, each of which has an energy
associated with it. To be able to use it to connect to probabilities of the two states of
our protein, we need to figure out what β is.
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9.3.1 Temperature as a derivative of entropy

A system (sometimes called a “body”) is a collection of matter that can be in a set of
microstates. A system has entropy S and an expectation for its energy, ⟨E⟩, often just
called “energy” for short. The derivative of the entropy of a system with respect to
its energy gives the reciprocal of a quantity called the temperature,

dS
d⟨E⟩ =

1
T . (9.32)

We have now formally defined temperature, and in so doing have established that it
is a purely statistical quantity, in that it is only defined for a system, and not for a mi-
crostate of a system. We are now using the entropy as a thermodynamic quantity, not
just informational, since we are considering the special case where we are applying
entropy to a set of states that have energies associated with them.

With our definition of temperature in hand, we can approach the task of identi-
fying β . Let us write down the entropy for the Boltzmann distribution as we have
derived it so far.

S = −K
∑

i

pi ln pi = −K
∑

i

pi ln
e−βEi

Z = −K
∑

i

pi(−βEi − ln Z)

= Kβ
∑

i

piEi + K ln Z
∑

i

pi = Kβ ⟨E⟩+ K ln Z. (9.33)

Thus, we have

∂S
∂⟨E⟩ = Kβ =

1
T . (9.34)

So, for the Shannon entropy to be equal to the thermodynamic entropy, Kβ = 1/T.
Thus, β = 1/KT. The constant K apparently imparts units to the temperature,
sinceKTmust have units of energy. In this context, we call the constantK theBoltz-
mann constant, and denote it as kB or k. The Boltzmann constant has a value of

kB = 1.38× 10−23 J/K. (9.35)

When we write the entropy as

S = −kB
∑

i

pi ln pi, (9.36)

it is referred to as theGibbs entropy.

We will also use β ≡ 1/kBT in our calculations, since it turns out to be notation-
ally convenient. Thus, we have

pi =
e−Ei/kBT∑
i e−Ei/kBT . (9.37)
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The quantity e−Ei/kBT represents an unnormalized probability and is referred to as a
Boltzmann weight.

9.3.2 The Boltzmann distribution and our two-state protein

We have now worked out the probability of our protein being in the active versus
inactive state. There are only two states, so the partition function is

Z = e−βEactive + e−βEinactive . (9.38)

Then, the probability that the protein is active is

pactive =
e−βEactive

e−βEactive + e−βEinactive
=

1
1 + e−β (Einactive−Eactive)

. (9.39)

The probability of being active is dependent only on the difference in the energies
of the active versus inactive states. In the limit of high temperature (small β ), the
protein has a 50/50 chance of being active of not. In the limit of low temperature
(large β ), pactive = 1 if Eactive < Einactive, and pactive = 0 if Eactive > Einactive.
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10 From statistical to thermodynamical

In the previous lesson, we defined temperature to be a derivative of one statistical
quantity, the entropy, with respect to another, the expectation of the energy, which
wewill refer to simply as the “energy.” This is the first connection we drew between
statistical quantities. In this lesson, we will derive more, and in the process expose
thermodynamic quantities, properties are either the entropy itself, a differential
thereof, or expectations of maximum-entropy distributions.

10.1 The extensivity of energy and entropy

Youmay recall inwhenwefirst introduced entropy that it ismonotonically increasing
in the number of outcomes of equal probability and further satisfies a composition
law. The form of the entropy was derived from these desiderata, and we will use that
form to investigate an important feature of the entropy, that it is first order homoge-
neous in its extensive variables. We will understand what that means in a moment.

Let us consider a thought experiment in which we have a system in which has
microstates indexed by i. Then, the entropy of this system is

S1 = −kB
∑

i

pi ln pi. (10.1)

Now, let’s say we have another system that is the same size with the same available
microstates, this time indexed by j. Of course, at any given time, these two sys-
tems might look different, with different microstates being populated, but they are
identical in the sense that they have the same size, same number of particles, same
microstates available, etc. The entropy of that system is

S2 = −kB
∑

j

pj ln pj. (10.2)

Now, let’s consider these two independent systems as the same system. The proba-
bility that the first system is in microstate i is pi and the probability that the second
system is inmicrostate j is pj, and the probability that the composite system is in state
(i, j) is pi pj. So, the entropy of the composite system is

S = −kB
∑

i

∑
j

pi pj ln pi pj = −kB
∑

i

∑
j

pi pj(ln pi + ln pj)

= −kB
∑

i

∑
j

pi pj ln pi − kB
∑

i

∑
j

pi pj ln pj
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= −kB

∑
j

pj

∑
i

pi ln pi −−kB

[∑
i

pi

]∑
j

pj ln pj

= S1 + S2, (10.3)

where we have used the fact that the bracketed terms are equal to one. So, we have
shown that the entropy of a composite systems is additive over its constitutive sub-
systems. In this case, S1 = S2, so doubling the size of our system of interest also
doubled the entropy.

I should clarify what I mean by the word “size” here. By “size,” I mean all of
the properties that doubled whenwemade the composite system out of two identical
systems. For example, if the systems were particles in a box, I would have to double
the number of particles and also double the volume of the box. Properties like the
number of particles and the volume are extensive properties.

The energy (remember this is short for the expectation of the energy) has a sim-
ilar relationship with the extensive properties of a system. Consider again our two
systems comprising the composite system. If one system is in a microstate i with
energy Ei and another is in a microstate j with energy Ej, then the total energy of the
composite system is Ei + Ej. So, we can compute the expectation of the energy for
the composite system as

⟨E⟩ =
∑

i

∑
j

pi pj(Ei + Ej) =
∑

i

∑
j

pi pj Ei +
∑

i

∑
j

pi pj Ej

=

∑
j

pj

∑
i

pi Ei +

[∑
i

pi

]∑
j

pj Ej

= ⟨E1⟩+ ⟨E2⟩. (10.4)

As we have just shown, the entropy of a composite system is the sum of the en-
tropy of its subsystems. In this sense, the entropy itself is also extensive. The same
is true for the energy of a composite system; it is the sum of the energy of its subsys-
tems. Energy is also extensive. Now, let N be the number of particles of a system,
V be the volume of the system, X1 be another extensive property of a system, X2
be another extensive property, etc. The entropy may be a function of all of these,
including the energy (which we already knew, since ∂S/∂⟨E⟩) = 1/T),

S = S(⟨E⟩,V,N,X1,X2, . . .). (10.5)

If we were to increase all of the extensive parameters by a factor of a, we would have

S(a ⟨E⟩, a V, a N, a X1, a X2, . . .) = a S(⟨E⟩,V,N,X1,X2, . . .). (10.6)
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Therefore, entropy is a first order homogeneous function of its extensive parameters.
This is a very important result, which has the immediate consequence that Euler’s
theorem for homogeneous functions (recall Section 8.4) holds, such that

S(⟨E⟩,V,N,X1,X2, . . .) =
∂S
∂⟨E⟩ ⟨E⟩+

∂S
∂V V +

∂S
∂N N

+
∂S
∂X1

X1 +
∂S
∂X2

X2 + . . . . (10.7)

In computing the above partial derivatives, it is assumed that the other parameters
are held constant. E.g., when computing ∂S/∂⟨E⟩, the volume, number of particles,
X1, X2, etc., are all held constant. In most texts on thermodynamics, this is shown
explicitly by surrounding the partial derivatives in parentheses and subscriptingwhat
is held constant, e.g.,

1
T =

(
∂S
∂⟨E⟩

)
V,N,X1,X2,...

. (10.8)

Wewill sometimes use this notation when the clarity is needed, but will often simply
write the partial derivatives.

10.2 Notation for the energy

Going forward, for notational and referential convenience, we will use the symbol E
to mean the expectation of the energy ⟨E⟩. Any subscripted energy, e.g., Ei, denotes
a microstate. We will refer to “energy” or “the energy” as the quantity with symbol
E. In many texts, this energy is denoted as U and is called the internal energy, so
named because it is the energy associated with the system of interest, in contrast to
energy coming fromoutside of the system, such as gravitational potential energy. We
will use the symbol E and refer to it simply as “the energy,” as is more common in
physics texts.

10.3 The total differentials of the energy and entropy

Based on our expression for the entropy and its extensive parameters above, (equa-
tion 10.7), we can write the the total differential of the entropy as

dS =
∂S
∂E dE +

∂S
∂V dV +

∂S
∂N dN +

∂S
∂X1

dX1 +
∂S
∂X2

dX2 + . . . . (10.9)

We can rearrange this expression to instead write the total differential of the en-
ergy.

dE =
∂E
∂S

(
dS− ∂S

∂V dV +
∂S
∂N dN +

∂S
∂X1

dX1 +
∂S
∂X2

dX2 + . . .

)
. (10.10)
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Clearly, because we did the simplest algebraic manipulation, these two expressions
are the same. Thus, if we can write down a function of the energy as a function of the
entropy and the other extensive parameters, we have exactly the same information
as if we could write the entropy as a function of the energy and its other extensive
parameters.

10.4 Intensive parameters

In contrast to extensive parameters, intensive properties are unchanged when we
change the size of a system. Temperature and pressure are examples. Because they
are unchanged with changes in extensive parameters, they are zero order homoge-
neous functions of the extensive parameters of a system. As an example, consider the
temperature, which we may write as a function of the system’s extensive properties
as T(S,V,N,X1,X2, . . .). Then,

T(a S, a V, a N, a X1, a X2, . . .) = T(S,V,N,X1,X2, . . .). (10.11)

It can be shown (and you will in your homework) that if X and Y are extensive
parameters, then X/Y and ∂X/∂Y are intensive. Referring to the expression for the
entropy above,

S(E,V,N,X1,X2, . . .) =
∂S
∂E E +

∂S
∂V V +

∂S
∂N N

+
∂S
∂X1

X1 +
∂S
∂X2

X2 + . . . , (10.12)

we see that the entropy may be written as the sum of product-pairs, each one the
product of an intensive property and an extensive one. These intensive-extensive
pairs are called conjugate thermodynamic variables.

∂S
∂E ,

∂S
∂V ,

∂S
∂N ,

∂S
∂X1

,
∂S
∂X2

, . . .

are all intensive properties. We can define them to have names and associated sym-
bols. They are, starting with the one we have already seen,

∂S
∂E =

1
T , (10.13)

∂S
∂V =

p
T , (10.14)

∂S
∂N = − μ

T , (10.15)
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∂S
∂Xi

= − ξ i
T , (10.16)

where p is referred to as the thermodynamic pressure, μ is the chemical potential,
and ξ i denotes a generic intensive property. With the exception of temperature,
intensive properties are denoted with lower case symbols and extensive properties
with upper case symbols.

With these names in hand, we can write the total differentials for the entropy and
the energy as

dS =
1
T dE +

p
T dV− μ

T dN− ξ 1
T dX1 −

ξ 2
T dX2 − . . . , (10.17)

dE = T dS− p dV + μ dN + ξ 1 dX1 + ξ 2 dX2 + . . . . (10.18)

We can also use Euler’s theorem for first order homogeneous functions to write
the energy as

E = TS− pV + μN + ξ 1X1 + ξ 2X2 + . . . . (10.19)

Thus, we see that temperature is conjugate to entropy, negative pressure to volume,
chemical potential to number of particles, and so on.

10.5 Thermodynamic quantities

It is important to recall, again, that all of the properties in the above total differen-
tials are statistical quantities. That is, they are either the entropy itself, a differential
thereof, or expectations. They are all properties, or summaries, of the probability
distribution of microstates of a system. Such quantities are called thermodynamic
quantities, and the study of thermodynamics is the study of these summaries of the
underlying probability distribution of the microstates of a system.

(10.20)
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11 Thermodynamic potentials

In this lesson, we will derive will explore thermodynamic potentials. These are
Legendre transforms of the energy, as we will expose momentarily.

11.1 The free energy

As we start down the road to introduce thermodynamic potentials, recall that we
derived the Boltzmann distribution,

Pi =
e−βEi

Z , Z =
∑

i

e−βEi (11.1)

by maximizing entropy subject to the normalization constraint and by considering
that each microstate i has an energy associated with it and an expectation for the
energy exists. We derived a relationship between the entropy and the energy,

S = kB β ⟨E⟩+ kB ln Z. (11.2)

The dimensionless quantity ln Z, the natural logarithm of the partition function,
appears in this expression. It turns out that this is a very important quantity, and
its importance will become clear as we explore its relationship to other statistical
quantities. At the risk of putting the cart before the horse because I know where this
is all headed, I am going to define a quantity called the free energy, often referred to
(particularly by chemists) as theHelmholtz free energy,13

F = −kBT ln Z = − ln Z
β . (11.3)

Wewill discuss why this is called a free energy soon, but for now, we can think of this
as an energy proportional to the logarithm of the partition function, ln Z.

To understand what this free energy is, we note two properties derivable from
the Boltzmann distribution.

F = E− TS, (11.4)

S = −∂F
∂T . (11.5)

13Chemists often use the symbol A for the free energy instead of F, after the German word Arbeit,
which means “work.” The connection to work will be made clear soon as well.
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You can derive these yourself (now, or in the homework!). The first equation sug-
gests thatF is a Legendre transform of the energy. This can be seen by recalling from
our definition of Legendre transforms in Section 8.3,

Legendre-transformed E = E− ∂E
∂S S = E− TS, (11.6)

since the temperature is defined as

T =
∂E
∂S . (11.7)

Indeed, F is behaving like a Legendre-transformed energy. Then, we have

dF = dE− TdS− SdT. (11.8)

Since

dE = TdS− pdV + μdN + ξ 1dX1 + ξ 2dX2 + . . . , (11.9)

we have

dF = −SdT− pdV + μdN + ξ 1dX1 + ξ 2dX2 + . . . . (11.10)

Thus, to verify that F is a Legendre transform of the energy, we must have that(
∂F
∂T

)
V,N,Xi

= −S, (11.11)

which you can also show. Therefore, F is indeed a Legendre transform of the energy.
As a Legendre transform, it has the same information as the energy E, which means
it has the same information as the entropy S.

Recalling relations of first order homogeneous functions, we identify that the free
energy is a function of T, V, N, X1, X2, . . .;

F = F(T,V,N,X1,X2, . . .). (11.12)

For notational convenience going forward, wewill focusmainly on the variablesT, S,
p,V, μ , andN, andwill just keep inmind that we can have arbitrary other parameters
ξ i, Xi, so that we write

F = F(T,V,N), (11.13)

with the other parameters implied where applicable. Thus, we say that the free en-
ergy is a function of temperature, volume, and number of particles.
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11.2 The Gibbs free energy

Let us now consider the case where each microstate has associated with it a volume;
that is the volume may also vary from microstate to microstate in addition to the
energy. Then, we enforce that there exists an expectation of the volume,

⟨V⟩ =
∑

i

Vi pi. (11.14)

In this case, our Lagrangian is

L = S− α
(

1−
∑

i

pi

)
− β

(
⟨E⟩ −

∑
i

Ei pi

)
− γ

(
⟨V⟩ −

∑
i

Vi pi

)

= −kB
∑

i

pi ln pi − α
(

1−
∑

i

pi

)
− β

(
⟨E⟩ −

∑
i

Ei pi

)
− γ

(
⟨V⟩ −

∑
i

Vi pi

)
,

(11.15)

where we have introduced another Lagrange multiplier γ . Evaluating

∂L
∂pj

= 0 ∀j (11.16)

and rearranging yields

pi = e−1−α/kB e−βEi/kB e−γVi/kB . (11.17)

Reassigning the constants such at α ← −1− α/kB, β ← β/kB, and β γ ← γ/kB
yields

pi = eα e−βEi e−β γVi . (11.18)

We chose to redefine γ such that each term in the exponents appear as β times an
energy. Enforcing the normalization condition forces the value of α to be such that

pi =
e−β (Ei+γVi)

Z
, (11.19)

where

Z =
∑

i

e−β (Ei+γVi). (11.20)

Akin to the free energy, we posit that we can define theGibbs free energy to be

G = −kBT lnZ. (11.21)
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Recall that the pressure is

p = T ∂S
∂⟨V⟩ , (11.22)

where we have explicitly written the thermodynamic quantity of volume V as an ex-
pectation over the probability distribution we have defined above. To connect the
pressure to the Lagrange multiplier γ , we need to write the entropy as a function
of ⟨V⟩ so we can compute the derivative. We proceed as we did for Equation (9.33)
when we derived an expression for the entropy as a function of energy.

S = −kB
∑

i

pi ln pi = −kB
∑

i

pi ln
e−β (Ei+γVi)

Z

= −kB
∑

i

pi(−β (Ei + γVi)− lnZ)

= kB β
(∑

i

Ei pi + γ
∑

i

Vi pi

)
+ kB lnZ

∑
i

pi

= kB β ⟨E⟩+ kB β γ ⟨V⟩+ kB lnZ. (11.23)

Using this result, we can compute

T ∂S
∂⟨V⟩ = kBTβ γ = γ . (11.24)

Thus, we have that the Lagrange multiplier γ is the pressure (which is why we chose
the sign we did when defining it), such that

pi =
e−β (Ei+pVi)

Z
, (11.25)

with

Z =
∑

i

e−β (Ei+pVi), (11.26)

which also gives that

S = kB β (⟨E⟩+ p⟨V⟩) + kB lnZ. (11.27)

Multiplying both sides by the temperature T, we get

TS = ⟨E⟩+ p⟨V⟩ −G, (11.28)

or, rearranging and dropping the expectation brackets,

G = E− TS + pV = F + pV. (11.29)
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Thus, the Gibbs free energy is a Legendre transform of the free energy.

The total differential of the Gibbs free energy is then

dG = dF + pdV + Vdp

= −SdT + Vdp + μdN + ξ 1dX1 + ξ 2dX2 + . . . . (11.30)

The variables of theGibbs free energy areG = G(T, p,N). As a Legendre transform
of the free energy, which itself has all of the thermodynamic information of a system,
so too does the Gibbs free energy contain all of the thermodynamic information.

11.3 Whence “free energy?”

Whyare the free energy andGibbs free energy called“free energies?” Toanswer this
question, we need to step back for a moment and think about the energy of a system.
The energy of a system changes by putting energy in or taking energy out (just like in
a material balance, energy is conserved, so we have to think about what is put in and
taken out). We can think of two ways in which we can put energy in to a system. One
way is to mechanically manipulate the system, e.g., by compressing it or moving it
in a gravitational field. This mechanical manipulation is called work, which we will
denote as W. Another way is to move energy from a neighboring system at a higher
temperature than the system of interest. We have already seen this kind of energy
transfer; it served to bring the temperatures of the two systems to the same value.
Transfer of energy in this manner is called heat, which we will denote as Q. So, we
can write the total differential of energy as

dE = đQ + đW. (11.31)

I was careful here to write a slash through the d’s because these are strictly not total
differentials; only the energy has a total differential. We cannot talk about the heat of
a system or the work of a system, but we can talk about the energy of a system. If an
system has some energy E1 and then conditions are changed such that it has energy
E2, then the total amount of heat plus the total amount of work is E2 − E1. That is
to say, we can only talk about heat and work as it pertains to changes in the energy of
a system.

We have also that, provided we are operating under conditions where thermo-
dynamics apply; that is that the state of the system is such that the entropy is well-
defined, said to be in equilibrium,

dE = T dS− p dV + μ dN + ξ 1 dX1 + ξ 2 dX2 + . . . . (11.32)

We can imagine that changing the volume of a system is a way to add energy by doing
mechanical work. The system may also do chemical work, e.g., by changing N, or
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other kinds of work by changing X1, X2, etc. Then, for a change in these properties
over time,

dW
dt = −p dV

dt + μ dN
dt + ξ 1

dX1

dt + ξ 2
dX2

dt + . . . . (11.33)

Now, if we do this work in such a way that we maintain a thermal equilibrium, then

dE
dt = T dS

dt − p dV
dt + μ dN

dt + ξ 1
dX1

dt + ξ 2
dX2

dt + . . . =
dW
dt +

dQ
dt .

(11.34)

Comparing with our expression for dW/dt, we see that, under these conditions,

dQ
dt = T dS

dt . (11.35)

Note that this assumes we operate such that thermal equilibrium is maintained, but
if we do not quite manage that, the entropy must increase to to processes other than
heat transfer, so

dQ
dt ≤ T dS

dt . (11.36)

In this class, we will usually consider processes for which we maintain thermal equi-
librium, and the above holds with equality.

Now, assuming we operate such that entropy gain is due entirely to heat, we have

dW = dE− dQ = dE− TdS. (11.37)

If we do the work isothermally, that is while holding temperature constant, we have

TdS = d(TS) =���*
0

SdT + TdS. (11.38)

Thus,

dW = d(E− TS) = dF, (11.39)

since the free energy F is F = E − TS. So, the work done in an isothermal process
where equilibrium is maintained is equal to the free energy. That is, the free energy
is the amount of energy that is available, or “free,” to do work.

It’s an archaic name, relating back to the early days of thermodynamics when
the work involved expansion and compression of gasses to power steam engine, but
understanding where the name comes from allowed us to think about the concepts
of work and heat. Those concepts allow us to proceed to another important concept.
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11.4 Equilibrium as a minimization of free energy

Wehave seen that the quantitiesE, V, N, etc., at equilibrium are those thatmaximize
the entropy. We now show that equilibrium is equivalently achieved, under certain
conditions, when the free energy is minimal.

We also just showed that

dQ
dt ≤ T dS

dt , (11.40)

with equality in equilibrium conditions. We also have, from Equations (11.33) and
(11.34) that

dQ
dt =

dE
dt + p dV

dt − μ dN
dt − ξ 1

dX1

dt − ξ 2
dX2

dt − . . . . (11.41)

Thus, we have

dE
dt + p dV

dt − μ dN
dt − ξ 1

dX1

dt − ξ 2
dX2

dt − . . . ≤ T dS
dt . (11.42)

If the changes of the system happen under conditions where the temperature, vol-
ume, number of particles, etc., are held constant, then we may write

d(E− TS)
dt =

dF
dt ≤ 0, (11.43)

again, with equality holding at equilibrium. Therefore, equilibrium is achieved when
the free energy is minimal for constant temperature and constant volume processes.
Similarly, we can derive that for processes with constant temperature and constant
pressure, the Gibbs free energy is minimized.

11.5 Generalized potentials

Quantities that are Legendre transforms of the energy are called thermodynamic
potentials. They contain all of the the thermodynamic information of a system. We
have so far seen the free energy and the Gibbs free energy as thermodynamic poten-
tials. Let us think for a minute about how they were derived. We started by consid-
ering what extensive parameters may vary among the microstates of a system. We
then imposed that an expectation of the varying quantities must exist via a Lagrange
multiplier in an entropy maximization problem. For the free energy, we allowed the
energy to vary from microstate to microstate, and for the Gibbs free energy, we al-
lowed the energy and volume to vary. Upon maximizing the entropy, we find an
equilibrium probability distribution of microstates. We then used this probability
mass function to compute the appropriate expectations, allowing us to differentiate
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the entropy with respect to expectations, thereby connecting the Lagrange multi-
pliers to thermodynamic quantities given by derivatives of the entropy. Finally, we
could identify that the quantity given by the negative log of the partition function,
multiplied by the thermal energy kBT, is a Legendre transform of the energy.

Amore general result follows. Let us say that in addition to the energy, quantities
X1, X2, etc., may vary frommicrostate tomicrostate. For notational convenience, we
will consider only one such quantity, X, noting that the analysis trivially generalizes
to more (or even less, which is what we did for the free energy). The quantity X can
be any extensive variable. The Lagrangian for the entropy maximization problem is

L = −kB
∑

i

pi ln pi − α
(

1−
∑

i

pi

)
− β

(
⟨E⟩ −

∑
i

Ei pi

)

− β ξ
(
⟨X⟩ −

∑
i

Xi pi

)
, (11.44)

where β ξ is the Lagrange multiplier for the quantity X. Solving the optimization
problem yields

pi =
e−βEi e−β ξXi

Z
, (11.45)

where the partition function Z is given by

Z =
∑

i

e−βEi e−β ξXi . (11.46)

Using this probability mass function, the entropy can be written as

S = kB β ⟨E⟩+ kB β ξ ⟨X⟩+ kB lnZ

=
1
T ⟨E⟩+

ξ
T ⟨X⟩+ kB lnZ. (11.47)

It is clear, then, that theLagrangemultipliers are intensive properties given byderiva-
tive of the entropy,

1
T =

∂S
∂⟨E⟩ ,

ξ
T =

∂S
∂⟨X⟩ . (11.48)

If we define our potential to be F = −kBT lnZ, such that

S =
1
T ⟨E⟩+

ξ
T ⟨X⟩ −

1
T F. (11.49)
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Recalling again that the entropy is a first order homogeneous function of the exten-
sive parameters ⟨E⟩ and ⟨X⟩, F is also extensive. Rearranging, we have

F = ⟨E⟩ − TS + ξ ⟨X⟩. (11.50)

We identify the result as a Legendre transform of the energy, such that

dF = dF(T, ξ ) = −S dT + xdξ , (11.51)

where X = ⟨X⟩.

11.6 The enthalpy

Let us consider now another Legendre transform of the energy that we occasionally
use in assays in biochemistry. We will use the (−p, V) conjugate pair and define the
enthalpy H as

H = E + pV. (11.52)

Computing the total differential, the enthalpy is

dH = dE + pdV + Vdp

= TdS− pdV + μdN + pdV + Vdp

= TdS + Vdp + μdN. (11.53)

Just as a reminder, we could keep other parameters as well.

dH = TdS + Vdp + μdN + ξ 1dX1 + ξ 2dX2 + . . . , (11.54)

but for notational convenience, we usually write H = H(S, p,N).

11.7 The Gibbs-Duhem relation

Let us now consider a total Legendre transform of the energy. That is, we will per-
form a Legendre transform using all of the conjugate pairs. To do this, we will first
write the total differential of the energy as

dE = TdS− pdV + μdN + ξ 1 dX1 + ξ 2 dX2 + · · · . (11.55)

Next, we note from Euler’s theorem that

E = TS− pV + μN + ξ 1X1 + ξ 2X2 + · · · , (11.56)
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from which we can compute the total differential as

dE = TdS− SdT− pdV− Vdp + μdN + Ndμ

+ ξ 1 dX1 + X1 dξ 1 + ξ 2 dX2 + X2 dξ 2 + · · · . (11.57)

Equating the two expressions for the total differential of the energy, dE, and noting
that the underlined terms appear in both, we have

−SdT− Vdp + Ndμ + X1 dξ 1 + X2 dξ 2 + · · · = 0, (11.58)

a result known as theGibbs-Duhem relation. It says that the total differential of the
total Legendre transform of the energy is zero.
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12 Thermodynamic relations

Now that we have laid the groundwork for the study of thermodynamics, introducing
the key concepts of entropy, energy, and thermodynamic potentials, as well as work
and heat, we can see how these quantities are related.

We already know that the thermodynamic potentials are Legendre transforms of
the energy. For example,

F = E− TS, (12.1)

H = E + pV, (12.2)

G = F + pV = H− TS = E− TS + pV. (12.3)

We know that the temperature is given by the derivative of the entropy with respect
to the energy.

∂S
∂E =

1
T . (12.4)

We also know that the intensive parameters are derivatives of the entropy with re-
spect to their extensive conjugate (modulo temperature) with energy held constant.
They are similarly defined as derivatives of the energy with entropy held constant.

p = T
(
∂S
∂V

)
E,N,...

=

(
∂E
∂V

)
S,N,...

, (12.5)

μ = T
(
∂S
∂N

)
E,V,...

=

(
∂E
∂N

)
S,V,...

, (12.6)

ξ = T
(
∂S
∂X

)
E,V,N,...

=

(
∂E
∂X

)
S,V,N,...

. (12.7)

Finally, we know that if we operate such that thermal equilibrium ismaintainedwhile
changing conditions, then the heat and entropy differentials are related by

dQ = TdS. (12.8)

Furthermore, if we change conditions such that temperature is held constant, the
work is given by

dW = dF. (12.9)

Generally,

dE = đQ + đW, (12.10)

with the path-dependent đ’s changing to total differentials if we operate maintaining
thermal equilibrium.

With these relations in hand, we proceed to explore more.

90



12.1 Heat capacity

Let’s say we wish to see how much heat is required to raise the temperature of a
system by one temperature unit. To answer this, from the relationship between heat
and entropy, we can write

∂Q
∂T = T ∂S

∂T , (12.11)

which holds for processes where thermal equilibrium is maintained throughout. We
define the heat capacity C as

C = T ∂S
∂T . (12.12)

Then, the heat necessary to change the temperature from T1 to T2 is

Q =

∫ T2

T1

dT C. (12.13)

Of course, the amount of heat to raise the temperature will depend on how the
procedure is done (beyond just ensuring that it is in thermal equilibrium as the pro-
cess proceeds), andwe should be careful howwe define our derivative of the entropy.
For example, if the process is donewith the volume of the systemheld constant, then

C ≡ Cv = T
(
∂S
∂T

)
V
. (12.14)

Similarly, if the process is done with the pressure of the system held constant, then

C ≡ Cp = T
(
∂S
∂T

)
p
. (12.15)

Recalling the total differential of the energy,

dE = TdS− pdV + μdN, (12.16)

it is apparent that(
∂E
∂T

)
V,N

= T
(
∂S
∂T

)
V,N

= Cv. (12.17)

Therefore, at constant volume, the incremental gain in energy is given by an equiv-
alent quantity of heat. This makes sense, because holding the volume constant con-
strains the system to be absent of mechanical work (assuming there are no other
mechanical variables), so all of the energy change is present as heat.
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Similarly, recalling the total differential of the enthalpy,

dH = TdS + Vdp + μdN, (12.18)

it is apparent that(
∂H
∂T

)
p,N

= T
(
∂S
∂T

)
p,N

= Cp. (12.19)

Because the volume may change, some energy is used to do work, so not all of heat
is used to change the energy. The enthalpy is H = E + pV, which is precisely the
energy minus p-V work.

12.1.1 The positivity of the heat capacity

It matches our lived experience that the heat capacity is positive, since that implies
that adding heat to a system raises its temperature. But must this be true? And if so,
why?

To investigate, we recall that thermodynamic equilibrium occurs when the en-
tropy is maximal. The entropy is given by the Gibbs entropy, determined by the
probability mass function of microstates of a system. We can also write the entropy
as a function of expectations of this probability distribution, which comprise the ther-
modynamic parameters. So, just as the entropy is a concave function of the proba-
bilities, it must be a concave function of its thermodynamic parameters.

Since the entropy is a function of the energy, volume, number of particles, and
other extensive parameters, we write it as S = S(E,V,N, . . .). Then, in order to be
a concave function of these parameters, we must have the matrix

∇∇S =



(
∂2S
∂E2

)
V,N

(
∂2S

∂E ∂V

)
N

(
∂2S

∂E ∂N

)
E(

∂2S
∂E ∂V

)
N

(
∂2S
∂V2

)
E,N

(
∂2S

∂V ∂N

)
E(

∂2S
∂E ∂N

)
V

(
∂2S

∂V ∂N

)
E

(
∂2S
∂N2

)
E,V

 (12.20)

be negative definite. A necessary condition is that each of the entries in the diagonal
are negative. Consider the upper left entry.(

∂2S
∂E2

)
V,N

=

(
∂

∂E
1
T

)
V,N

= − 1
T2

(
∂T
∂E

)
V,N

= − 1
T2 Cv

< 0, (12.21)

where we have used the facts that ∂S/∂E = 1/T and (∂E/∂T)V = Cv. Thus, in
order for the entropy to be concave and therefore maximal, we must have Cv > 0.
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Systems were the constant-volume heat capacity becomes negative are said to be
unstable. More generally, an unstable system is one for which the entropy ceases to
be a concave function of one or more of its extensive thermodynamic variables.

12.1.2 Stability conditions and positivity of Cp

What about Cp? We can take a similar approach, but it is more convenient to do
so using a Legendre transform of the entropy. The entropy is a concave function of
its variables, all of which are extensive. Consider now the Legendre transform of
the entropy. Traditionally, the symbol S is overloaded for Legendre transforms of
entropy, with S = S(E,V,N) being the entropy and S[1/T] = S[1/T](T,V,N) being
the Legendre transform. The Legendre transform is

S[1/T] = S− E
T , (12.22)

and its differential is

dS[1/T] = −E d
(

1
T

)
+ p dV + μdN. (12.23)

Now, consider an arbitrary Legendre transform of the entropy,

S[ξ/T] = S− ξ
T X, (12.24)

We know that the entropy must be a concave function of X such that

∂2S
∂X2 =

∂(ξ/T)
∂X < 0. (12.25)

Now consider the second derivative of S[ξ/T] with respect to ξ/T. Since

dS[ξ/T] = −X d
(

ξ
T

)
+ · · · , (12.26)

∂2S[ξ/T]
∂(ξ/T)2 = − ∂X

∂(ξ/T) = − 1
∂(ξ/T)
∂X

. (12.27)

Since we have already established that the denominator must be negative for a stable
system, the second derivative of the Legendre transformed entropy must be posi-
tive. Generally, a Legendre transformed entropy must be a concave function of its
extensive parameters and a convex function of its intensive parameters. This follows
directly from the nature of Legendre transforms.
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It is further true (here stated without proof ) that stability requires that the en-
ergy is a convex function of its variables (all of which are extensive) and that Leg-
endre transforms of the energy are convex functions of their extensive variables and
concave functions of their intensive variables.

Using this latter property, we address the heat capacity for constant-pressure
processes. Recalling that

dG = −SdT + Vdp + μdN, (12.28)

we can consider(
∂2G
∂T2

)
p,N

= −
(
∂S
∂T

)
p,N

= −1
T Cp < 0. (12.29)

The last inequality holds because the Gibbs free energy must be a concave function
of its intensive parameters, including the temperatureT. Thus, we also haveCp > 0.

12.2 Susceptibilities

The heat capacities Cv and Cp are useful because they can be measured. In fact, we
will soon use them to interpret experiments on protein denaturation. However, heat
capacities are not the only measurable derivatives of the entropy or energy. In gen-
eral, a susceptibility is a quantity related to the derivative of an extensive property
with respect to an intensive property. We have seen two already, Cv = (∂E/∂T)V
and Cp = (∂E/∂T)p.

Let us now investigate twomore related tomechanical changes, specifically changes
of volume, of a system. The isothermal compressibility κT gives the fractional
change in the volume of a system upon a change in pressure under isothermal con-
ditions, and is given by

κT = − 1
V

(
∂V
∂p

)
T
. (12.30)

The isothermal compressibility is positive for stable systems. The coefficient of
thermal expansion α is the fractional change in volume upon raising the tempera-
ture while pressure is held constant. It is given by

α =
1
V

(
∂V
∂T

)
p
. (12.31)

12.3 Relating the susceptibilities

We have seen definitions of Cp, Cv, κT, and α , which makes it clear how they are
related to thermodynamic variables and their derivatives, but how are they related to
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each other? It turns out that addressing this question can be conveniently done with
some useful mathematical tools that we now introduce.

12.3.1 The triple product rule

The triple product rule, which we will not derive here, follows from the implicit
function theoremand says that if three variables can be related by a function f(x, y, z) =
0, which is very often the case in thermodynamics, then(

∂x
∂y

)
z

(
∂y
∂z

)
x

(
∂z
∂x

)
y
= −1. (12.32)

As an example, we can relate the coefficient of thermal expansion to other thermo-
dynamic derivatives using this formula.(

∂V
∂T

)
p

(
∂T
∂p

)
V

(
∂p
∂V

)
T
= −1, (12.33)

which leads to

α =
1
V

(
∂V
∂T

)
p
= − 1

V

[(
∂T
∂p

)
V

(
∂p
∂V

)
T

]−1

= − 1
V

(
∂p
∂T

)
V

(
∂V
∂p

)
T
.

(12.34)

12.3.2 Jacobians

A 2× 2 Jacobian is defined as

∂ (u, v)
∂ (x, y) ≡ det


(
∂u
∂x

)
y

(
∂u
∂y

)
x(

∂v
∂x

)
y

(
∂v
∂y

)
x

 (12.35)

The following properties are easily derived from the definition.

∂ (u, v)
∂ (x, y) = −∂ (v, u)

∂ (x, y) =
∂ (v, u)
∂ (y, x) =

(
∂ (x, y)
∂ (u, v)

)−1

, (12.36)

∂ (u, y)
∂ (x, y) =

(
∂u
∂x

)
y
, (12.37)
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∂ (u, v)
∂ (x, y) =

∂ (u, v)
∂ (t, s)

∂ (t, s)
∂ (x, y) =

∂ (u, v)
∂ (t, s)
∂ (x, y)
∂ (t, s)

. (12.38)

We can accomplish the same result as above using the convenient properties of
Jacobians.

(
∂V
∂T

)
p
=

∂(V, p)
∂(T, p) =

∂(V, p)
∂(T,V)
∂(T, p)
∂(T,V)

= −

(
∂p
∂T

)
V(

∂p
∂V

)
T

= −
(
∂p
∂T

)
V

(
∂p
∂V

)
p
.

(12.39)

This again leads to

α =
1
V

(
∂V
∂T

)
p
= − 1

V

(
∂p
∂T

)
V

(
∂V
∂p

)
T
. (12.40)

12.3.3 Maxwell relations

Consider the total differential of the free energy as a function of the temperature,
volume, and number of particles, F(T,V,N).

dF = −S dT− p dV + μdN. (12.41)

Now, compute the partial derivative of F with respect to T.

∂F
∂T = −S. (12.42)

Now, we will differentiate again, this time with respect to V.

∂2F
∂V∂T = − ∂S

∂V . (12.43)

We now repeat the differentiation again, this time differentiating first with respect to
V and then with respect to T.

∂2F
∂T∂V = −∂p

∂T . (12.44)

But, the order of differentiation should not matter, so

∂2F
∂T∂V =

∂2F
∂V∂T , (12.45)

96



which gives that(
∂S
∂V

)
T,N

=

(
∂p
∂T

)
V,N

(12.46)

This result is an example of a Maxwell relation. These are useful relationships
between two derivatives of thermodynamic quantities that result from equality of
mixed second derivatives of thermodynamic potentials. This relation was derived
by differentiating the free energy with respect to V and T. We can derive two more
using the free energy. First, by differentiating with respect to T and N,

−
(
∂S
∂N

)
T,V

=

(
∂μ
∂T

)
V,N

, (12.47)

and second by differentiating with respect to V and N,

−
(
∂p
∂N

)
T,V

=

(
∂μ
∂V

)
T,N

. (12.48)

Similar Maxwell relations may be derived from any Legendre transform of the
energy (except the total Legendre transform, which is zero).

12.3.4 Cp, Cv, κT, and α

Let’s use these tools to relate the susceptibilities. Let us state by writing the entropy
as a function of T and V with constant N.

dS =

(
∂S
∂T

)
V

dT +

(
∂S
∂V

)
T

dV. (12.49)

Differentiating with respect to T at constant p gives(
∂S
∂T

)
p
=

(
∂S
∂T

)
V
+

(
∂S
∂V

)
T

(
∂V
∂T

)
p

(12.50)

Using the relations

Cp

T =

(
∂S
∂T

)
p

(12.51)

Cv

T =

(
∂S
∂T

)
v

(12.52)

(
∂S
∂V

)
T
=

(
∂p
∂T

)
V
, (12.53)
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the last being one of the Maxwell relations we derived above, we have

Cp

T =
Cv

T +

(
∂p
∂T

)
V

(
∂V
∂T

)
p
. (12.54)

Using the triple product rule,(
∂p
∂T

)
V
= −

(
∂p
∂V

)
T

(
∂V
∂T

)
p
. (12.55)

Substituting this result into equation 12.54 yields

Cp

T =
Cv

T −
(
∂p
∂V

)
T

((
∂V
∂T

)
p

)2

(12.56)

Using the definitions of α and κT,

α =
1
V

(
∂V
∂T

)
p
, (12.57)

κT = − 1
V

(
∂V
∂p

)
T
, (12.58)

this is

Cp

T =
Cv

T + V α 2

κT
, (12.59)

As a result, we have

Cp = Cv + TV α 2

κT
. (12.60)

We have already shown the Cv is positive, and κT is positive (left to be shown in
homework), and the temperature and volume are both positive, so Cp ≥ Cv.

12.4 Thermodynamic variables on a per-particle basis

It is often convenient to convert the extensive thermodynamic variables to intensive
ones by dividing by the total number of molecules. For example, we can define e =
E/N, s = S/N, v = V/N, cv = Cv/N, and so on. The total differential of the
entropy, in the case of constant N, is then

ds =
1
T de +

p
T dv. (12.61)
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That of the energy is

de = T ds− p dv, (12.62)

and that of the free energy is

df = −s dT− p dv. (12.63)

The Gibbs-Duhem relation is

dμ = −s dT + v dp. (12.64)

The relation we just derived in the previous section is

cp = cv + Tv α 2

κT
. (12.65)

12.5 Equations of state

The preceding was a demonstration of how different thermodynamic properties are
related. We know, in a sense, what the thermodynamic properties are. They are
expectations and parameters (specifically parameters that arise as Lagrange multi-
pliers) that follow from a probability distribution of microstates that maximize the
entropy. In order to know what the thermodynamic properties are, as expressed in
terms of the expectations of the underlying probability distribution of microstates
(the thermodynamic variables), we need to fully specify the energy, or the entropy,
or a Legendre transform of either. To do so, we need to either

1. Have a microscopic model for the system where the microstates are defined
and counted so that we may derive the probability distribution fromwhich the
thermodynamic variables may be calculated,

2. Measure the thermodynamic variables,

3. Invent a phenomenological model for the thermodynamic variables.

Let’s say for a moment that we could specify an expression for the energy in
terms of the entropy, volume, and number of particles.

E = E(S,V,N). (12.66)

Recall the Euler relation as

E =
∂E
∂S S +

∂E
∂V V +

∂E
∂N N. (12.67)
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If we know how each of the derivatives depend on the other independent variables,
we will also have fully specified the energy. That is, if we know all three of

∂E
∂S = T(S,V,N) = T(s, v), (12.68)

∂E
∂V = −p(S,V,N) = −p(s, v), (12.69)

∂E
∂N = μ (S,V,N) = μ (s, v), (12.70)

wewill have all of the thermodynamic information. Each of the above are an example
of an equation of state, which is a relationship between an intensive parameter and
the extensive variables.

Without complete thermodynamic information, that is with only one or two of
the equations of state, we can still get useful results by applying the thermodynamic
relations we have derived. So, even having a single equation of state is useful. This
is perhaps most evident by the most famous equation of state, which belongs to an
ideal gas, pV = NkBT.
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13 Solution thermodynamics

Having laid much of the groundwork of the theory of thermodynamics, we now turn
our attention to a specific system, a solution containing solvent and solutemolecules.
Everything we have developed thus far is general; we need to specify all equations of
state, or an energy, entropy, or Legendre transform thereof, to have all of the thermo-
dynamic information. We will now work specifically with solutions and chemically
reacting systems.

13.1 Conditions for equilibria of chemical reactions

While this section of the lecture material is about solution thermodynamics, we in-
troduce chemical equilibria more generally here. This treatment holds for solutions,
as well as gas and other phase reactions.

Let us assume that a mixture of chemical species Ni of species i. Then, the total
differential of the energy is

dE = T dS− p dV +
∑

i

μ idNi, (13.1)

with the energy being

E = TS− pV +
∑

i

μ iNi, (13.2)

where μ i is the chemical potential of species i. Recall that the chemical potential is

μ i =

(
∂E
∂Ni

)
S,V,Nj

= −T
(

∂S
∂Ni

)
E,V,Nj

, (13.3)

where j ̸= i. Writing the Gibbs free energy as the Legendre transform of the energy,
we have

G = E− TS + pV =
∑

i

μ iNi. (13.4)

If we have a chemical reaction that proceeds in a system that is held at constant tem-
perature and pressure, we have already worked out that the Gibbs free energy must
be minimal at equilibrium. That means that

dG
dNi

= 0 ∀i. (13.5)
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Writing this differential for i = 1 gives

dG
dN1

=
∂G
∂N1

∂N1

∂N1
+

∂G
∂N2

∂N2

∂N1
+

∂G
∂N3

∂N3

∂N1
+ · · ·

= μ 1 + μ 2
∂N2

∂N1
+ μ 3

∂N3

∂N1
+ · · · = 0. (13.6)

If we have a chemical reaction proceeding, the changes in the species are coupled.
For every molecule of type 1 that is produced, ν i/ν 1 molecules of type 2 are pro-
duced. Thus,

∂Ni

∂N1
=

ν i

ν 1
. (13.7)

Thus, we have

dG
dN1

=
∑

i

μ i
ν i

ν 1
= 0. (13.8)

Multiplying by ν 1 gives the equilibrium condition for a chemical reaction,∑
i

ν i μ i = 0. (13.9)

This result is general. We have not specified the form of the chemical potential yet
(we will in a moment for solutions). It holds for all reactions. Indexing the reactions
with r, the equilibrium condition is∑

i

ν ri μ i = 0 ∀r. (13.10)

13.2 A dilute solution of one solute

We will now work out the expression for the chemical potential of the components
of a dilute solution. To start with, assume we have a total of N solvent molecules and
no solute. The Gibbs free energy is

G = Nμ 0
solv(T, p), (13.11)

where I have explicitly shown the pressure- and temperature-dependence of the sol-
vent chemical potential. I use the superscript 0 to denote that this is the chemical
potential for pure solvent; we will soon see that its chemical potential changes as
we add solute. Now, we will add one solute molecule to the solution. We define
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by α (T, p,N) the amount that the Gibbs free energy changes as a result of adding a
single solvent molecule. With this new molecule in the solution, we have

G = Nμ 0
solv(T, p) + α (T, p,N). (13.12)

Now, let’s add another one. Naively, we would think that the result is

G = Nμ 0
solv(T, p) + 2α (T, p,N). (13.13)

There is a problem with this, though. Recall that the Gibbs free energy is related to
a partition function by

G = −kBT lnZ. (13.14)

As we sum up each of the terms in the partition functionZ, we consider the configu-
rations of the molecules. We could swap the first one we added with the second one
we added. And configurationwith this swap is identical to onewithout it. Therefore,
we put too many terms, exactly twice too many terms, in the partition function by
neglecting that we could swap out the molecules. So, we have a partition function
that is twice as large as it should be as we have written the Gibbs free energy in gray
above. So, the correct Gibbs free energy should is

G = Nμ 0
solv(T, p) + 2α (T, p,N) + kBT ln 2. (13.15)

We can keep adding particles until we get n of them.14 The correction for overcount-
ing is n!, since there are n! different ways to swap the solute molecules we put in
there. Therefore, the Gibbs free energy is

G = Nμ 0
solv(T, p) + nα (T, p,N) + kBT ln n!. (13.16)

Since n will typically be very large, we can use Stirling’s approximation for the
factorial,

n! ≈
√

2πn
(n

e

)n (
1 +O

(
n−1)) , (13.17)

such that ln n! ≈ n ln n− n. Applying this approximation,

G = Nμ 0
solv(T, p) + nα (T, p,N) + kBT(n ln n− n)

= Nμ 0
solv(T, p) + n (α (T, p,N) + kBT ln n− kBT) . (13.18)

Now, investigating the expression for theGibbs free energy, we recall that itmust be a
first order homogeneous function of its extensive parameters, including the number

14I acknowledge that this introduces an extensive parameter that we are denoting with a lowercase
symbol, but this is very widely done in the context of solutions, and we proceed with this notation,
always remembering that n is extensive.
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of solvent molecules N and the number of solute molecules n. This determines that
α (T, p,N)must be of the form

α (T, p,N) = μ 0(T, p)− kBT ln N, (13.19)

such that

G = Nμ 0
solv(T, p) + n

(
μ 0(T, p)− kBT ln N + kBT(ln n− 1)

)
= Nμ 0

solv(T, p) + n
(

μ 0(T, p) + kBT
(

ln
n
N − 1

))
(13.20)

Note that we have neglected any interactions between solvent molecules. This
means that we have assumed the solution is dilute. It we wished to include particle-
particle interactions, we express their contributions to the Gibbs free energy, taking
μ 0(T, p) as the first order contribution, and then n2 γ (T, p)/2N as a second order
contribution. (The contribution multiplying n2 must be of the form γ (T, p)/N to
maintain first order homogeneity of the Gibbs free energy.) So, we can write the
Gibbs free energy, to second order in the interactions of solute molecules, as

G = Nμ 0
solv(T, p) + n

(
μ 0(T, p) + kBT

(
ln

n
N − 1

)
+

n
2N γ (T, p)

)
.

(13.21)

Going forward, we will assume diluteness and ignore terms of order n2 and higher in
our expression for the Gibbs free energy and use equation (13.20).

13.3 A dilute solution with multiple solutes

The above analysis generalizes to multiple components. Equation (13.21) becomes

G = Nμ 0
solv(T, p) +

∑
i

ni

μ 0
i (T, p) + kBT

(
ln

ni

N − 1
)
+
∑

j

nj

2N γ ij(T, p)

 ,

(13.22)

or, neglecting higher order terms,

G = Nμ 0
solv(T, p) +

∑
i

ni

(
μ 0

i (T, p) + kBT
(

ln
ni

N − 1
))

, (13.23)

Now thatwehavewritten down theGibbs free energy, we can compute the chem-
ical potential of species j as

μ j(T, p) =
(
∂G
∂nj

)
T,p,N

= μ 0
j (T, p) + kBT ln

nj

N . (13.24)
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We can also write the chemical potential of the solvent as

μ solv = μ 0
solv − kBT

∑
i

ni

N . (13.25)

We define by xi themole fraction of species i as

xi =
ni

N +
∑

j nj
. (13.26)

In a dilute solution, there are many many more solvent molecules than solute, such
that

N +
∑

j

nj ≈ N, (13.27)

and

xi ≈
ni

N . (13.28)

Then, we can write the Gibbs free energy, the solute chemical potential, and the
solvent chemical potential respectively as

G = Nμ 0
solv(T, p) +

∑
i

ni
(

μ 0
i (T, p) + kBT (ln xi − 1)

)
, (13.29)

μ i(T, p) = μ 0
i (T, p) + kBT ln xi, (13.30)

μ solv = μ 0
solv − kBT

∑
i

xi. (13.31)

13.4 Osmotic pressure

Imagine we have two solutions in contact with each other. They could be separated
by a semipermeable membrane through which solvent molecules may pass, but not
solute. This would be the situation of a cell in buffer with closed ion channels. Water
may pass through the membrane through porins, but not, for example, ions.

We can write down the Gibbs free energy of the respective solutions, labeled 1
and 2, as

G = N1 μ 0
solv(T, p1) + n1

(
μ 0

1(T, p1) + kBT
(

ln
n1

N1
− 1
))

+ N2 μ 0
solv(T, p2) + n2

(
μ 0

2(T, p2) + kBT
(

ln
n2

N 2
− 1
))

. (13.32)
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Note that the temperatures of each solution are equal; they are in thermal equilib-
rium. By construction, there can be only equilibrium with respect to temperature
(established by both having the same temperature) and solvent, but not solute, since
solute cannot pass between phases. So, we must have, at equilibrium,

dG
dN1

=

(
∂G
∂N1

)
T,p

∂N1

∂N1
+

(
∂G
∂N2

)
T,p

∂N2

∂N1

=

(
∂G
∂N1

)
T,p
−
(
∂G
∂N2

)
T,p

= 0, (13.33)

where we have used ∂N2/∂N1 = −1, since every solvent molecule that is lost from
solution 2 goes into solution 1. The partial derivatives are computed as

∂G
∂N1

= μ 0
solv(T, p1)− kBT n1

N = μ 0
solv(T, p1)− kBT x1 = 0 (13.34)

∂G
∂N2

= μ 0
solv(T, p2)− kBT n2

N = μ 0
solv(T, p2)− kBT x2 = 0. (13.35)

By equation 13.33, these must be equal, giving

μ 0
solv(T, p1)− kBT x1 = μ 0

solv(T, p2)− kBT x2, (13.36)

which we note is equivalent to equality of chemical potential of solvent. In fact, for
any species that may exchange between two solutions, equality of chemical potential
of that species in each of the two solutions is an equilibrium condition, regardless of
diluteness of the solution, as you will show in homework.

Using the expression for equality of chemical potential of solvent, we have that

μ 0
solv(T, p2)− μ 0

solv(T, p1) = kBT (x2 − x1). (13.37)

The left hand side is the difference in chemical potential of pure solvent for different
pressures. For dilute solutions, the pressure difference Π ≡ p2 − p1 is often small,
so we can expand μ 0

solv(T, p2) to linear order in Π .

μ 0
solv(T, p2) ≈ μ 0

solv(T, p1) +

(
∂μ 0

solv
∂p

)
T,N

Π . (13.38)

Using a Maxwell relation derived from the Gibbs free energy,(
∂μ 0

solv
∂p

)
T,N

=

(
∂V
∂N

)
T,p

(13.39)

This latter derivative is called the partial molar volume, which is the amount that
the volume changes as a result of adding more molecules. For a pure substance,

106



which is what the case here, coming from an expansion of the pure solvent chemical
potential, it is the inverse of the number density of solvent, 1/ρ solv. If the volume of
solvent is V, then ρ solv = N/V. Thus, we have

μ 0
solv(T, p2)− μ 0

solv(T, p1) ≈
Π

ρ solv
=

V
N Π . (13.40)

Rearranging the equilibrium condition using this expression, we have

Π =
NkBT

V (x2 − x1). (13.41)

This difference in pressure Π between one solution and the other is called os-
motic pressure. The above relation, valid for dilute solutions, is called the van’t
Hoff formula (not to be confused with the van’t Hoff equation that related chemi-
cal equilibrium constants to enthalpy) or theMorse equation.

13.5 Chemical equilibria and the law of mass action

Now thatwe havewritten down expressions for the chemical potentials of solutes, we
can write down the equilibrium conditions for chemical reactions in dilute solutions.
Recall that the equilibrium condition for a chemical reaction is∑

i

ν i μ i = 0. (13.42)

Substituting in the expression for solute chemical potentials, this is∑
i

ν i
(

μ 0
i (T, p) + kBT ln xi

)
= 0. (13.43)

We can rearrange this to be

exp

[
−
∑

i

ν i β μ 0
i (T, p)

]
=
∏

i

xν i
i . (13.44)

The term on the left hand side is referred to as the equilibrium constant, usually
denoted as K, and is a function of temperature and pressure. The resulting equation,

K ≡ exp

[
−
∑

i

ν i β μ 0
i (T, p)

]
=
∏

i

xν i
i , (13.45)

is referred to as the law of mass action.
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As an example, consider a system with solute A, B, and AB, where the chemical
reaction AB −−⇀↽−− A + B may occur. Then, we have ν A = ν B = 1 and ν AB = −1.
The resulting equilibrium condition is

Kd ≡ exp
[
− μ 0

A + μ 0
B − μ 0

AB
kBT

]
=

xA xB

xAB
. (13.46)

Note that in this special case, I have labeled the equilibrium constant as Kd, which
is referred to as a dissociation constant, which is a term applied to an equilibrium
constant describing a reaction involving the unbinding of two species.

Dissociation constants are often reported as

Kd =
cA cB

cAB
, (13.47)

giving a dissociation constant in units of concentration. In this case, the expression
relating the equilibrium constant to an exponentiation of differences of the pure-
species chemical potentials is nonsensical because of a unit mismatch. Therefore, if
the Kd is to be reported in units of concentration, it we must have

Kd = ρ solv exp
[
− μ 0

A + μ 0
B − μ 0

AB
kBT

]
, (13.48)

where ρ solv is the number density of the solvent.

13.6 Nonideal solutions and activities

So far, we have been working with dilute solutions wherein the chemical potential of
solute is given by

μ i(T, p) = μ 0
i (T, p) + kBT ln xi. (13.49)

Such solutions are called ideal solutions. As concentrations rise, the chemical po-
tential deviates from this expression. To handle nonidealities, we introduce a drop-in
replacement for the mole fraction called activity ai to maintain the same functional
form of the chemical potential.

μ i(T, p) = μ 0
i (T, p) + kBT ln ai(T, p, x). (13.50)

Note that in general the activity is a function of temperature, pressure, and the mole
fractions of all species in solution. The activities are typically determined experi-
mentally or have a phenomenological functional form. It is also common to define
ai = γ i xi, where γ i is the activity coefficient, which is unity for an ideal solution.

In all of the analysis we have done in solution thermodynamics, we can drop in ai
(or γ ixi) for xi to handle the nonideal conditions. The caveat is that the nonidealities
may introduce thermodynamic instabilities that are not present for ideal solutions.
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14 Electrochemistry

Many solutions in and out of the livingworld contain charged species. These charged
species, through electrostatic interactions, contribute to the total energy of a system.
To derive their contributions, we can take the usual approach using a generalized
potential as in Section 11.5.

14.1 Charged species in solution

We define Q (not to be confused with the heat Q) to be the total charge of charged
species in solution, which can in general be a function of position. This is an exten-
sive variable given by

Q =
∑

i

zi e Ni, (14.1)

where zi is the valence, the number of charges per molecule or ion, of species i, e is
the elementary charge of a proton (1.602× 10−19 Coulombs), and Ni is the number
of molecules of species i. We define the electrostatic potential ψ as

ψ = T
(
∂S
∂Q

)
E,V,N

. (14.2)

All charged species experience this potential, which is induced by electrodes apply-
ing a potential or by presence of other charges. The electrostatic potential, like the
distribution of charges, is in general dependent on space. With these definitions, we
can write the total differential of the energy,

dE = T dS− p dV +
∑

i

μ i dNi + ψ dQ

= T dS− p dV +
∑

i

(μ i + zi e ψ ) dNi, (14.3)

where we have used the fact that

dQ = e
∑

i

zi dNi. (14.4)

The parenthetical term is referred to as the electrochemical potential for species i,
which we will denote by μ̄ i, given by

μ̄ i = μ i + zi e ψ . (14.5)
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We can perform a Legendre transform of the energy to obtain the Gibbs free
energy, which is useful to consider for a systemat constant temperature andpressure.

dG = −S dT + V dp +
∑

i

μ̄ i dNi

= −S dT + V dp +
∑

i

(μ i + zi e ψ ) dNi. (14.6)

Wecanuse thermodynamic considerations towork out spatial equilibriumcharge
distributions in electrolytic solutions. Imagine a small slice of solution containing
electrolytes positioned at x next to another small slice positioned at x+ Δx. At con-
stant temperature and pressure, the equilibrium condition (dG = 0) is that the elec-
trochemical potentials of the respective slices are equal (as you will show in home-
work),

μ̄ i(x + Δx) = μ i(x + Δx) + zi e ψ (x + Δx)

= μ̄ i(x) = μ i(x) + zi e ψ (x) ∀i. (14.7)

Rearranging, we have

μ i(x + Δx)− μ i(x) = −zi e(ψ (x + Δx)− ψ (x)). (14.8)

Dividing both sides by Δx and taking the limit where Δx→ 0 gives

dμ i
dx = −zi e dψ

dx . (14.9)

This generalizes to two or three dimensions as

∇x μ i = −zi e∇x ψ . (14.10)

If we have a dilute solution, then μ i = μ 0
i + kBT ln xi, and we have (considering

the one-dimensional case for simplicity, where the mole fractions xi are not to be
confused with the spatial coordinate x),

kBT d ln xi

dx = −zi e dψ
dx . (14.11)

Note also that we can consider any two positions in a solution that is in thermal
equilibrium. Since every differential slice of solution is in equilibriumwith its neigh-
bors, any two differential slices are in equilibrium with each other. Therefore, we
can consider two positions, x1 and x2, and thermodynamic equilibrium enforces that
the electrochemical potentials are equal, giving

μ̄ i(x1) = μ i(x1) + zi e ψ (x1) = μ̄ i(x2) = μ i(x2) + zi e ψ (x2). (14.12)
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Assuming a dilute solution, this is

kBT ln xi(x1) + zi e ψ (x1) = kBT ln xi(x2) + zi e ψ (x2), (14.13)

which can be rearranged to give

ln
xi(x2)

xi(x1)
= −βzi e(ψ (x2)− ψ (x1)). (14.14)

This is sometimes referred to as theNernst equation, though in chemistry theNernst
equation is more often taken to be as it is defined in section 14.4.

14.2 Charge neutrality

In most calculations involving electrochemistry, we assume that the number of pos-
itive charges (e.g., one million for a million sodium ions and twomillion for a million
magnesium ions) and negative charges are equal. This is called charge neutrality.
To understand from whence this assumption comes, consider what would happen
if we had an imbalance of positive and negative ions, say with more positive ions
than negative. The electrostatic potential of a charged object is given by V = Q/C,
where Q is the total charge and C is its capacitance. Water is quite effective at con-
ducting current, and the capacitance of spherical conducting object is approximately
C = 4π ε 0R, where R is the radius of the sphere. For a giant sphere, say an entire
meter in diameter, the capacitance is about 10−10 Farads, since ε 0 = 8.85 × 10−12

F/m. One Farad is one Coulomb per volt, and there are about 6 × 1018 individual
charges per Coulomb. So, in order to have an electostatic potential of one volt in a gi-
ant four cubic meter volume (4000 liters), we would need to have Q = VC = 10−10

Coulombs of charge, or a charge imbalance of 108 charges. At nanomolar concen-
trations of monovalent ions, say NaCl, we have a total of about 2.5 × 1018 each of
positive and negative ions. So, even at very low concentrations, the charge imbal-
ance even at high voltages, is totally negligible compared to total concentration of
charged species. Thus, we generally have

total number of positive charges = total number of negative charges (14.15)

in a solution.

14.3 The Donnan potential

Wepreviously considered two solvent phases in contact in Section 13.4. In that case,
we did not explicitly take into account charges of the solute. Let us assume that sol-
vent may pass between the two phases, as may small ions, like sodium and chloride,
but not a charged macromolecular solute. Recall that in our analysis of uncharged
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species, an equilibrium condition is equality of chemical potential of an exchange-
able species in the two phases. As you will show in your homework, in the case of
charged exchangeable species, the equality of electrochemical potential is an equilib-
rium condition.

Considering first the solvent, we can find using the same analysis of Section 13.4
that the pressure difference between the two phases is the osmotic pressure

Π = ρ solvkBT (x2 − x1), (14.16)

where x1 and x2 are the total solute concentrations in the respective phases.

Nowwe will consider the solutes. For purposes of discussion, let’s say we have a
mole fraction x+,1 of positively chargedmonovalent ions and x−,1 negatively charged
monovalent ions in one phase, and x+,2 and x−,2 respectively in the other phase. The
other phase also has a mole fraction x2 of a macromolecule that has charge z.

If we consider positively charged solute, equality of electrochemical potential
gives

μ̄+,1 = μ̄+,2, (14.17)

which for a dilute solution is

μ 0
+,1(T, p) + kBT ln x+,1 + z+ e ψ 1 = μ 0

+,2(T, p + Π ) + kBT ln x+,2 + z+ e ψ 2.

(14.18)

Here, since the positive ion is monovalent, z+ = 1. As when we treated osmotic
pressure,

μ 0
+,2(T, p + Π ) ≈ μ 0

+,1(T, p) + Π/ρ+, (14.19)

where ρ+ is the number density of pure solute. Note that this is a bit of a strange
number density, since it is the number density of pure solute under the conditions in
which it is in solution. So, it is not a realizable number density. Then,

e (ψ 2 − ψ 1) = −
Π
ρ+

− kBT ln
x+,2

x+,1
. (14.20)

Dividing through by e gives

ψ 2 − ψ 1 = −
Π

eρ+

− kBT
e ln

x+,2

x+,1
. (14.21)

Similarly,

ψ 2 − ψ 1 = −
Π

eρ−
+

kBT
e ln

x−,2

x−,1
. (14.22)
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For dilute solutions, these equations are

ψ 2 − ψ 1 = −
ρ solv(x2 − x1)

eρ+

− kBT
e ln

x+,2

x+,1
(14.23)

ψ 2 − ψ 1 = −
ρ solv(x2 − x1)

eρ−
+

kBT
e ln

x−,2

x−,1
, (14.24)

where x1 and x2 are respectively the total mole fraction of all solutes in the two solu-
tions.

The fact that an imbalance of ions on either side of a membrane gives a potential
difference across a membrane is called the Donnan effect and the potential differ-
ence, ψ 2 − ψ 1 is called the Donnan potential. The Donnan potential is a major
contributor to the potential across cell membranes and therefore has important con-
sequences in cell physiology, most notably in nerve cells.

To solve for the Donnan potential, we need to solve for the four mole fractions
x+,1, x−,1, x+,2, and x−,2. We need to know the partial molar volumes of pure species,
ρ solv, ρ+, and ρ−. However, the osmotic pressure terms that contain these con-
stants are typically negligible compared to the other terms comprising the Donnan
potential. In that case, we have

ln
x+,2

x+,1
= ln

x−,1

x−,2
, (14.25)

or
x+,2

x+,1
=

x−,1

x−,2
. (14.26)

Now, also by charge neutrality,

x+,1 = x−,1, (14.27)

x+,2 − x−,2 + z x2 = 0. (14.28)

Clearly, if x2 = 0, we have x+,1 = x−,1 = x+,2 = x−,2, but the presence of the
charged macromolecule that cannot cross phases tips the balance, and the concen-
tration of ions on either side of the membrane will be unequal. To work out the
concentrations of the species, and therefore the Donnan potential, we can use equa-
tions (14.26)-(14.28), plus another expression, possibly a conservation of charged
ion x+,1 + x+,2 = x0

+.

14.4 Electrochemistry of reactions

We have already worked out the equilibrium condition for a chemical reaction in the
absence of an electrostatic field (that is for ψ = 0). Now, consider a reaction that
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is occurring producing charged species (including electrons) in the presence of an
electric field. A subclass of these reactions of great biological importance are redox
reactions, in which a species accepts electrons (is reduced) or donates electrons (is
oxidized). A classic example is the oxidation of vitamin C,

C6H8O6 −−⇀↽−− C6H6O6 + 2 H+ + 2 e−. (14.29)

Using precisely the same arguments as in Section 13.1, we can derive the equilib-
rium conditions for a redox reaction to be∑

i

ν i μ̄ i = 0. (14.30)

For a dilute solution this is∑
i

ν i
(

μ 0
i + kBT ln xi + zi e ψ

)
= 0. (14.31)

Rearranging, we have[
e−β

∑
i ν i μ 0

i

]
e−βeψ

∑
i ν izi =

∏
i

xν i
i . (14.32)

We recognize the bracketed as the equilibrium constant and the right hand side as
the expression we are used to seeing from the law of mass action. The unbracketed
term on the left hand side serves as an adjustment to the equilibrium constant due
to the presence of an electrostatic potential ψ . Note that the correction is unity in
the absence of an electrostatic potential (ψ = 0) and/or in the absence of charged
species zi = 0 ∀i).

When written in a different form,

E = E0 − kBT
n ln

∏
i

xν i
i , (14.33)

where

n =
∑

i

ν izi (14.34)

is the directional total number of electrons that that get transferred in the reaction,
and

E =
ψ
n (14.35)

is the electromotive force, so named because it describes how the presence of an
electrostatic field drives flow of charges in a reaction. The quantity

E0 =
1
n
∑

i

ν i μ 0
i (14.36)
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is (confusingly, in my opinion) called the standard reduction potential in the context
of redox reactions. I prefer simply to think of it according to its equation. If K is the
equilibrium constant in the absence of an electrostatic field, then

E0 =
kBT
n ln K. (14.37)

Equation 14.33 is called the Nernst equation by chemists. Note that each term in the
Nernst equation has dimension of energy per charge, most commonly reported in
volts.
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Part III

Kinetics and thermodynamics
together
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15 Transport by thermal diffusion

The typed lecture notes on diffusion are forthcoming. Please see the following hand-
written notes for now.
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16 Analytical methods for biophysical chemistry

In this lecture, wewill explore a fewof the analytical techniques formeasuring kinetic
and equilibrium parameters of biochemical systems.

16.1 Equilibrium sedimentation

In equilibrium sedimentation experiments, a tube of solution of a protein or protein
complex of interest is placed in a centrifuge. The concentration of protein is mea-
sured along the tube. The shape of this concentration profile is used to infer informa-
tion about themolecular mass of the protein. This sounds like a silly way to compute
the molecular mass of a biomolecule or biomolecular complex. Why not just do se-
quencing and add up the masses of the amino acids? This technique helps deduce
which complexes form and in what stoichiometry, which is not really accessible from
sequencing data.

Let ω be the angular velocity of the rotor of the centrifuge and r describe the
distance from the center of the rotor to a given position in the tube of solution. Let
ρ H2O be the density of the solvent and ρ p be the density of the protein analyte of
interest. Note that ρ p/ρ H2O ≈ 1.4 (BNID 104272). Let a be the radius of the
analyte, which is what we seek to measure in this experiment.

Due to its density being greater than water, the protein will tend to fall toward
the bottom of the tube with steady state velocity v. As it falls through the solvent,
it experiences a friction f, such that it experiences a drag force of Fdrag = −fv. As
we have seen, for a spherical object, f = 6π ηa, but we will use f for brevity for now.
The analyte also experiences a centrifugal force, given byFcentrifugal = me ω 2r, where
me is the effective mass of the protein. It is given by

me = Ma (1− va ρ solvent) , (16.1)

where va = ∂V/∂ma is the change in volume of a solution when a mass of analyte
is added, referred to as the partial specific volume of the analyte, and ρ solvent is the
mass density of the solvent. The partial specific volume and mass density can be
separately determined by measuring masses and volumes.

At steady state, the drag force balances the centrifugal force such that

Fdrag + Fcentrifugal = −fv + me ω 2r. (16.2)

Solving for the sedimentation velocity, we have

v =
me ω 2 r

f =
4πa3

3
(ρ p − ρ H2O)ω 2r

f . (16.3)
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We also know that at steady state, the total flux must vanish, meaning that

jdiffusive + jsedimentation = −D dc
dr + vc = 0. (16.4)

Therefore,

v =
D
c

dc
dr = D d ln c

dr . (16.5)

We now have two equations for the sedimentation velocity, which we can set
equal to each other.

D d ln c
dr =

me ω 2 r
f . (16.6)

Integrating these equations over r gives∫ c

c0

dc′ D
c′ = D ln

c
c0

=

∫ r

r0

dr′ me ω 2 r
f =

me ω 2(r2 − r2
0)

f . (16.7)

The Einstein-Smoluchowski relation gives that Df = kBT, so we have

ln
c
c0

=
me ω 2(r2 − r2

0)

2kBT . (16.8)

We can measure all of the parameters in this equation except for me. So, with mea-
sured concentrations for each position r (including r0), we can perform a regression
to find me. From this, we can get the molecular mass via Ma = me/ (1− va ρ solvent).

16.2 Differential scanning calorimetry

Calorimetricmethods involvemeasuring heat input and output into a systemof inter-
est. Thermodynamic relations that we have derived thus far are then used to connect
heat to properties of interest.

We first consider differential scanning calorimetry. In this

Please see scanned notes that follow.
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16.3 Surface plasmon resonance

Please see scanned notes that follow.
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Appendix A: Algebraic manipulations in physical problems

Throughout this course, we often need to take complicated mathematical expres-
sions and rearrange them into a more interpretable form. This is a crucial step in any
theoretical analysis, as it allows us to gain insight fromourmathematical expressions.
To help keep things clear and simple, I find it is useful to follow the rules below.

• Write what you know: When you begin a model, write down expressions you
know from your modeling assumptions or from physical laws.

• Keep it simple: As you are working through problems, keep expressions as
simple as possible until they need to be complicated in order to make progress
or gain insight. This means, for example, not to expand expressions into poly-
nomials or insert expressions derived for given variables until it is necessary.

• Dimensionless parameters: When you identify dimensionless ratios of pa-
rameters, it is useful to redefine them as a single dimensionless parameter.

• Dimensionless variables: Similarly, when you identify a dimensionless ratio
of a variable and a parameter, define a dimensionless variable.

• Factor with unity: Keeping in mind the keep-it-simple rule for when you do
it, factor terms such that they have a the form x = x0× dimensionless factors.
If a term consists of added dimensionless terms, factor into the form (1 ±
dimensionless terms) or (dimensionless terms− 1).

• Easy limits: When certain limits are of interest, consider the limits of simple
expressions where possible. Expanding an expression as a Taylor series to lin-
ear order is often a good way to assess limiting expressions for small parameter
values.

As an example of howwecan go about deriving simple expressions for an analysis,
let us consider a toy problem that draws on some thermodynamic principles of gases
that we will not cover in this course. In the Fig. 8, is the schematic of a piston in a
cylinder of length L with cross-sectional area A where the piston is connected to a
spring with spring constant k. The cylinder and piston are adiabatic, meaning that
no heat may be conducted through them; they are perfectly insulating. Initially, the
pressure is equal on each side of the piston is p0 and the spring is at its rest length (the
length of the spring absent any applied force) of l. The temperature of the gas is T0.
Then, the right chamber is suddenly evacuated such that the gas in the left chamber
expands, pushing the piston rightward against the spring. The gas has a per-particle
heat capacity of c, which is independent of temperature and pressure. Our goal is
to compute the equilibrium position x of the piston and the final temperature T and
pressure p of the gas in the left chamber.
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x

l

L

Figure 8: Side view of an adiabatic cylinder with a frictionless piston connected
to a spring. The equilibrium length of the spring is l and the total length of the
cylinder is L. It has a cross-sectional area of A.

According to thewrite-what-you-know rule, Iwill write downwhat I know. (Some
of these principles are outside of the scope of the thermodynamics we cover in class,
but the mathematical expressions are nonetheless simple.)

• I know from a balance of forces that at equilibrium, the pressure force is bal-
anced by the restoring force of the spring. The former is pA and the latter is
−Fspring = kx, giving

pA = kx. (16.9)

• I also know that the ideal gas law should hold, such that

p =
NkBT

A(l + x) . (16.10)

since the volume of the left chamber is A(l+ x). Here, N is the number of gas
particles in the left chamber.

According to the factor-with-unity rule, it is useful to write
sums as unity plus ratios, so we could write the expression
for the pressure as

p =
NkBT

Al
1

1 + x/l .

I have chosen not to now, since it adds clutter, and am sticking
with the keep-it-simple rule. I am also not concerning myself
with a more complicated expression for N right now, also in
accordance with the keep-it-simple rule. We will get to both
of these things later.
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• The ideal gas law should also hold before evacuation of the right chamber, such
that

p0 =
NkBT0

Al . (16.11)

• Another equation of state for an ideal gas relates the temperature to the in-
ternal energy. A spring is also present, which contributes kx2/2 to the total
internal energy, such that

E = NcT + kx2/2. (16.12)

• Because the cylinder and piston are well insulated, this is an adiabatic process,
so the total internal energy does not change.

Now that we have what we know written out, we can devise a strategy to solve
for the position of the equilibrium piston, x. The force balance, combined with the
expression of for the pressure via the ideal gas law, give a relation between x and the
equilibrium temperature T and the physical constants for this system. Next, we can
getT as a function of x using the expression for the internal energy and noting the the
internal energy does not change. Finally, we can get N as a function of the physical
constants via (16.11). The expressions might get messy, but by looking at the simple
expressions we already know and how they are connected, the path to a solution is
clear.

Having the keep-it-simple rule in mind, we will not yet substitute the pressure in
to the force balance, but just leave equations (16.9) and (16.10) for now. Instead, we
will proceed to compute T in terms of x. Recalling another equation of state for an
ideal gas, E = NcT, the internal energy in the left chamber prior to expansion is

E0 = NcT0. (16.13)

The energy after expansion contains the thermal contributions from the gas, but also
the energy in the spring, which is kx2/2, giving

E = NcT +
1
2

kx2. (16.14)

Because thewalls are adiabatic, the energy inside the chamber cannot change, so that
E = E0, giving

NcT0 = NcT +
1
2

kx2. (16.15)

Rearranging, we get

T = T0 −
1
2

kx2

Nc . (16.16)
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Again, according to the factor-with-unity rule, I could write this as

T = T0

(
1− 1

2
kx2

NcT0

)
.

I am again choosing not to do this right now according to the keep-
it-simple rule, though it would not add that much clutter if I did.
We will regardless get to factoring-by-unity later in our work.

We are now ready to start combining things. We start with combining the force
balance with our expression for the pressure via the ideal gas law.

pA =
NkBT
l + x = kx. (16.17)

Now, we will insert our expression for T.

NkB

l + x

(
T0 −

1
2

kx2

Nc

)
= kx. (16.18)

We now have it; an equation involving x and the physical parameters of the system.
Note that according to the keep-it-simple rule, we have not yet inserted our expres-
sion for N. To solve for x, we need to rearrange this equation to give us a quadratic
equation.

k
(

1 +
kB

2c

)
x2 + klx− NkBT0 = 0. (16.19)

A pointwherewe start needing toworkwith polynomials is often a good place to start
defining dimensionless parameters and dimensionless variables, as this can simplify
the the expressions. We all have experience with polynomials leading to nasty ex-
pressions. We note that each term in the polynomial has dimension of energy, so we
can divide by an energy scale, kl2 so that all terms are dimensionless. We get(

1 +
kB

2c

)(x
l

)2
+

x
l −

NkBT0

kl2 = 0. (16.20)

The equation is now a quadratic equation in x/l, which leads us to define a dimen-
sionless variable x̃ = x/l. This was a convenient time to apply the dimensionless-
variable rule. We can also apply the dimensionless-parameter rule by noting we have
two dimensionless parameters. The first is NkBT0/kl2, which we will define as ζ . If
we write the ratio as

ζ =
NkBT0

kl2 =
NkBT0/l2

k , (16.21)
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we see that it is the ratio of a force-per-length due to the thermal energy of the gas
(the numerator in the second expression) to the stiffness of the spring (the denom-
inator). We could define our second dimensionless parameter as kB/c, since that
ratio appears, but it makes more physical sense to define our second dimensionless
parameters as the inverse, c/kB. This has the physical meaning of the heat capacity
of the gas in units of kB. Though outside the topics of this course, for a monatomic
ideal gas, c/kB = 3/2. Importantly, this tends to be not too far from unity for ideal
gasses. So, we define a second dimensionless parameter

c̃ =
c
kB

. (16.22)

We can now write the quadratic equation as(
1 + (2c̃)−1) x̃2 + x̃− ζ = 0. (16.23)

Notice that this is a clean, tractable equation, even while employing the quadratic
formula.

We can now solve for x̃ via the quadratic formula, choosing the root such that the
piston moves rightward, to get

x̃ =
−1±

√
1 + 4ζ (1 + (2c̃)−1)

2 (1 + (2c̃)−1)

=
c̃

1 + 2c̃

(√
1 + 4ζ (1 + (2c̃)−1)− 1

)
. (16.24)

Note that we have applied the factor-with-unity rule to get a more interpretable ex-
pression for x̃.

While this is a tidy expression, it still has N-dependence via ζ . To get an expres-
sion only in terms of p0, T0, and physical constants, we need an expression for N. We
note that prior to evacuating the right chamber, we had

p0Al = NkBT0, (16.25)

such that

N =
p0Al
kBT0

. (16.26)

So, we can re-write

ζ =
NkBT0

kl2 =
p0A/l

k , (16.27)

which is a ratio of the force-per-length due to pressure exerted by the gas to the spring
constant. Naturally, this has the samemeaning as our previously defined ζ , since the
pressure force of the gas is thermal in nature.
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Finally, knowing x, we can write the temperature. We would like to express it in
terms of our dimensionless variable and parameters. We did not do this immediately
before because we had not yet decided on the dimensionless ratios we would use, but
we can do it now. Starting with (16.16), we have

T = T0 −
1
2

kx2

Nc = T0 −
1
2

kl2x̃2

Nc . (16.28)

Inserting our expression for N, we get

T = T0 −
1
2

kl2x̃2

c
kBT0

p0Al = T0

(
1− x̃

2c̃ ζ

)
, (16.29)

where I have applied the factor-with-unity rule. The temperature decreases by the
factor in parentheses from the starting temperature. I have chosen to leave this ex-
pression as

T = T0

(
1− x̃

2c̃ ζ

)
, (16.30)

because substituting the expression for x̃ will not add further insight. Finally, we can
write the pressure from the force balance as

p =
kl
A x̃ =

p0

ζ x̃. (16.31)

So, in summary, we have

x
l =

c̃
1 + 2c̃

(√
1 + 4ζ (1 + (2c̃)−1)− 1

)
, (16.32)

T
T0

= 1− x/l
2c̃ ζ , (16.33)

p
p0

=
1
ζ

x
l . (16.34)

Note that we stipulate that x ≤ L, lest the piston go through the end of the cylinder.
So, if the above expression for x/l exceeds l/L, we set x = L.

Now let’s consider limits. First, we consider the limit of a stiff spring. Note that
“limit of a stiff spring” is not a precise statement, since we have to consider stiffness
of the spring compared to another physical quantity. Fortunately, our dimension-
less parameters allow us to do this! We can consider the limit where the energy
stored in the spring is large compared to the thermal energy of the gas, such that
ζ = NkBT0/kl2 ≪ 1. To take this limit, instead of expanding the entire expression
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for x̃ in a Taylor series about ζ = 0, we should use a simpler expression according
to the easy limits rule. Instead, we compute the Taylor series of√

1 + ay = 1 +
ay
2

+O(y2). (16.35)

Using this easier-to-derive result, we can write, taking a = 4
(
1 + (2c̃)−1) for small

ζ , √
1 + 4ζ (1 + (2c̃)−1) ≈ 1 + 2

(
1 + (2c̃)−1) ζ , (16.36)

such that

x̃ =
2c̃

1 + 2c̃
(
1 + (2c̃)−1) ζ = ζ . (16.37)

So, in the limit of a strong spring, we have

x = lζ , (16.38)

T = T0
(
1− (2c̃)−1) , (16.39)

p = p0 (16.40)

You might think it even easier to consider the small ζ limit by go-
ing back to our quadratic equation (16.23). We have(

1 + (2c̃)−1) x̃2 + x̃− ζ = 0

If we take ζ ≈ 0, we get(
1 + (2c̃)−1) x̃2 + x̃ = 0.

This is now factorable and is easily solved. We get x̃ = 0 and

x̃ = − 1
1 + (2c̃)−1 .

So, the root that gives the physical solution is identically zero.
This is not right, as it includes only the zeroth order term in ζ ,
and not the first order term. In general, when working with poly-
nomials and taking some coefficients to be small, you should use
perturbation theory, which is beyond the scope of this class.

Now, let’s consider the limit of a very weak spring, where ζ is large. Wewill also
assume that L is sufficiently large that the piston does not hit the right wall of the
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cylinder. In this case, the ζ term is dominant in the expression for x̃, giving

x̃ ≈ c̃
1 + 2c̃

√
4ζ (1 + (2c̃)−1) =

√
2c̃

1 + 2c̃ ζ . (16.41)

We can then compute the temperature and pressure in the limit of small ζ as

T = T0

(
1− x̃

2c̃ ζ

)
≈ T0

(
1− 1√

2c̃(1 + 2c̃)ζ

)
, (16.42)

p =
p0

ζ
x
l ≈

√
2c̃

ζ (1 + 2c̃) . (16.43)

It is important to note that in the weak spring limit, the displacement is roughly
√

ζ
times the rest length of the spring. With ζ large, this is a very large displacement,
and in practice Hooke’s law would break down.

Because for ideal gases, c̃ tends to be close to order unity (roughly 3/2 for a
monatomic ideal gas), the only dimensionless parameter we need to consider about
is ζ , which is the ratio of the thermal energy of the gas in the chamber to the energy
stored in the spring. We have done that, and we can plot the results, show in Fig. 9.

I hope that going through this exercise made clear the value of keeping it simple
while going through algebraic manipulations. Application of the factor-with-unity,
dimensionless-parameters, and dimensionless-variables rules greatly facility physi-
cal interpretation of the results you derive. Finally, limits are often useful to inter-
pretation of results. For example, it is much easier to think about x = lζ for small
ζ that for the full expression for x that came from the quadratic formula.
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Figure 9: Dimensionless piston position, temperature, and pressure as a func-
tion of ζ . The dashed lines are the low- and high-ζ limits. The code to generate
these plots are in Listing 2.

Appendix B: Code listings

1 import numpy as np
2 import scipy.integrate
3

4 import bokeh.io
5 import bokeh.plotting
6

7

8 def semibatch_rhs(N, t, kappa):
9 """Right-hand side for semibatch reactor dynamics for
10 A + B -> C, with feed of A."""
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11 NA, NB = N
12 dNA_dt = -kappa * NA * NB / (1 + t)
13 dNB_dt = 1 - dNA_dt
14

15 return np.array([dNA_dt, dNB_dt])
16

17

18 # Parameters
19 t_end = 5
20 t = np.linspace(0, t_end, 400)
21 N0 = np.array([10, 0])
22 kappa_vals = [0.3, 1, 3]
23

24 # Solve and build plots
25 figs = []
26 for i, kappa in enumerate(kappa_vals):
27 # Solve
28 N = scipy.integrate.odeint(semibatch_rhs, N0, t, args=(kappa,))
29

30 # Compute number of AB molecules
31 NAB = N0[0] - N[:, 0]
32

33 # Compute volume to get dimensionless concentrations
34 V = 1 + t
35

36 # Build plots
37 p = bokeh.plotting.figure(
38 frame_width=400,
39 frame_height=100,
40 x_axis_label="tτ/" if i == 2 else "",
41 y_axis_label="nondim. conc.",
42 x_range=[0, 5],
43 )
44 p.line(t, N[:, 0] / V, line_width=2, legend_label="A")
45 p.line(
46 t,
47 N[:, 1] / V,
48 line_color=bokeh.palettes.Category10_3[1],
49 line_width=2,
50 legend_label="B",
51 )
52 p.line(
53 t,
54 NAB / V,
55 line_color=bokeh.palettes.Category10_3[2],
56 line_width=2,
57 legend_label="AB",
58 )
59 p.title = f"κ = {kappa}"
60 if i > 0:
61 p.legend.visible = False
62 figs.append(p)
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63

64

65 bokeh.io.show(bokeh.layouts.gridplot(figs, ncols=1))

Listing 1: Semibatch reactor time course
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1 import numpy as np
2

3 import bokeh.io
4 import bokeh.plotting
5

6 # Parameters (c for monatomic ideal gas)
7 c = 1.5
8 zeta = np.logspace(-4, 4, 200)
9

10 # Full analytical solutions
11 x = c / (1 + 2 * c) * (np.sqrt(1 + 4 * zeta * (1 + 1 / 2 / c)) - 1)
12 T = 1 - x / 2 / c / zeta
13 p = x / zeta
14

15 # Approximate solutions for low zeta
16 x_low = zeta
17 T_low = 1 - 1 / 2 / c
18 p_low = 1
19

20 # Approximate solutions for high zeta
21 x_high = np.sqrt(2 * c * zeta / (1 + 2 * c))
22 T_high = 1 - 1 / np.sqrt(2 * c * (1 + 2 * c) * zeta)
23 p_high = np.sqrt(2 * c / zeta / (1 + 2 * c))
24

25 # Set up plots
26 plot_kwargs = dict(
27 frame_width=300,
28 frame_height=150,
29 x_axis_type="log",
30 x_range=[1e-4, 1e4],
31 align="end",
32 toolbar_location=None,
33 )
34 plot_x = bokeh.plotting.figure(
35 y_axis_label="$$\\tilde{x}$$",
36 y_axis_type="log",
37 y_range=[1e-4, 1e2],
38 **plot_kwargs,
39 )
40

41 plot_T = bokeh.plotting.figure(
42 y_axis_label="$$T/T_0$$",
43 y_range=[0.6, 1.05],
44 **plot_kwargs,
45 )
46

47 plot_p = bokeh.plotting.figure(
48 x_axis_label="$$\\zeta$$",
49 y_axis_label="$$p/p_0$$",
50 y_axis_type="log",
51 **plot_kwargs,
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52 )
53

54 # Populate glyphs
55 limit_kwargs = dict(line_width=2, line_color="gray", line_dash="

dashed")
56 plot_x.line(zeta, x, line_width=2)
57 plot_x.line(zeta, x_low, **limit_kwargs)
58 plot_x.line(zeta, x_high, **limit_kwargs)
59

60 plot_T.line(zeta, T, line_width=2)
61 plot_T.line(zeta, T_low, **limit_kwargs)
62 plot_T.line(zeta, T_high, **limit_kwargs)
63

64 plot_p.line(zeta, p, line_width=2)
65 plot_p.line(zeta, p_low, **limit_kwargs)
66 plot_p.line(zeta, p_high, **limit_kwargs)
67

68 # Display
69 bokeh.io.show(bokeh.layouts.column([plot_x, plot_T, plot_p]))

Listing 2: Piston-spring analysis
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